Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Crash Detection System Using Hidden Markov Models

2004-03-08
2004-01-1781
This paper presents the design of a crash detection system based on the principles of continuous-mode Hidden Markov Models (HMM) with real-valued emission parameters. Our design utilizes log-likelihood for optimizing HMM parameters including the number of states in the model and the accelerometer crash-pulse buffer size resulting in lower costs and complexity of the crash detection system. Cross validation technique based on Jackknifing is utilized to estimate the crash pulse detection rate for a variety of crash events involving rigid as well as offset deformable barriers with head-on and oblique angle impacts. The system is simulated using Matlab and Simulink, and the proposed model is able to accurately classify crash-events within 10 ms from the time of the impact.
Technical Paper

Strain Rate Dependent Foam - Constituitive Modeling and Applications

1997-02-24
971076
Many foams exhibit significant strain rate dependency in their mechanical responses. To characterize these foams, a strain rate dependent constitutive model is formulated and implemented in an explicit dynamic finite element code developed at FORD. The constitutive model is developed in conjunction with a Lagrangian eight node solid element with twenty four degrees of freedom. The constitutive model has been used to model foams in a number crash analysis problems. Results obtained from the analyses are compared to the experimental data. Evidently, numerical results show excellent agreement with the experimental data.
Technical Paper

Use of Photogrammetry in Extracting 3D Structural Deformation/Dummy Occupant Movement Time History During Vehicle Crashes

2005-04-11
2005-01-0740
The ability to extract and evaluate the time history of structural deformations or crush during vehicle crashes represents a significant challenge to automotive safety researchers. Current methods are limited by the use of electro-mechanical devices such as string pots and/or linear variable displacement transducers (LVDT). Typically, one end of the transducer must be mounted to a point on the structure that will remain un-deformed during the event; the other end is then attached to the point on the structure where the deformation is to be measured. This approach measures the change in distance between these two points and is unable to resolve any movement into its respective X, Y, or Z directions. Also, the accuracy of electro-mechanical transducers is limited by their dynamic response to crash conditions. The photogrammetry technique has been used successfully in a wide variety of applications including aerial surveying, civil engineering and documentation of traffic accidents.
Technical Paper

Development of Numerical Models for Injury Biomechanics Research: A Review of 50 Years of Publications in the Stapp Car Crash Conference

2006-11-06
2006-22-0017
Numerical analyses frequently accompany experimental investigations that study injury biomechanics and improvements in automotive safety. Limited by computational speed, earlier mathematical models tended to simplify the system under study so that a set of differential equations could be written and solved. Advances in computing technology and analysis software have enabled the development of many sophisticated models that have the potential to provide a more comprehensive understanding of human impact response, injury mechanisms, and tolerance. In this article, 50 years of publications on numerical modeling published in the Stapp Car Crash Conference Proceedings and Journal were reviewed. These models were based on: (a) author-developed equations and software, (b) public and commercially available programs to solve rigid body dynamic models (such as MVMA2D, CAL3D or ATB, and MADYMO), and (c) finite element models.
X