Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

The Programmed Restraint System - A Lesson from Accidentology

1997-11-12
973333
Accident studies show that frontal collisions, both as regards the number of people killed and those seriously-injured, are by far the type of crash with the most serious consequences. In order to improve this situation, it is necessary to ensure that the means used to restrain occupants work as efficiently as possible, whilst preserving the occupant compartment and thus by eliminating intrusion on the occupant restrained by seat-belts and pretensioners. In frontal collisions where vehicle intrusion is minor, the main lesions caused to occupantss are thoracic, mainly rib fractures resulting from the seat-belt. In collisions where intrusion is substantial, the lower members are particularly vulnerable. In the coming years, we will see developments which include more solidly-built cars, as offset crash test procedures are widely used to evaluate the passive safety of production vehicles.
Technical Paper

Methodological Aspects of an Experimental Research on Cerebral Tolerance on the Basis of Boxers' Training Fights

1987-11-01
872195
In order to obtain data about human head tolerance, the APR Laboratory of Biomechanics has developed a specific methodology for volunteer boxers. These ones are used because they expose themselves, in their normal body activities, to direct head impacts similar in nature to those experienced by vehicle occupants under crash conditions. This paper describes the specific experimental technique that permits association of the severity of the blows, measured in terms of physical parameters, to corresponding physiological effects, measured in medical terms.
Technical Paper

Relation Between Sacroilium and Other Pelvic Fractures Based on Real-World Automotive Accidents

2018-11-12
2018-22-0010
The study firstly aimed at looking whether sacroilium (SI) fractures could be sustained as unique pelvic injuries in side impact real world automotive accidents. Secondarily, the sacroilium fractures observed in conjunction with other pelvic fractures were analyzed to investigate the existence of injury association patterns. Two real world accident databases were searched for SI fractures. The occupants selected were front car passengers older than 16, involved in side, oblique or frontal impact, with AIS2+ pelvic injuries. In frontal impact, only the belted occupants were selected. The cases were sorted by the principal direction of force (dof) and the type of pelvic injury, namely SI, pubic rami, iliac wing, acetabulum, pubic symphysis, and sacrum injuries. The relation between SI and pubic rami injuries were investigated first. The first database is an accident database composed of cases collected in France by car manufacturers over a period of approximately 40 years.
Technical Paper

Thoracic Injury Investigation using PMHS in Frontal Airbag Out-of-Position Situations

2005-11-09
2005-22-0015
Many studies have reported multiple rib fractures sustained by an Out-of-Position (OOP) driver subjected to a frontal airbag deployment, but the injury mechanisms and thresholds remain unclear. Two successive phases occur during the bag deployment: punch-out loading of the thorax, followed by a membrane effect (Horsch et al. 1990). The aim of this study was to investigate the thoracic injuries generated by each phase separately. Tests of nine post-mortem human surrogates (PMHS) were carried out on a static test bench using a driver side airbag module described by Petit et al. (2003). The steering wheel was replaced by a plate in order to increase the loading generated by the airbag. Three loading configurations were performed: membrane only, punch-out only, and both types combined. The membrane-only tests were performed with the thorax initially positioned at 13, 78 and 128 mm from the plate in order to vary the load magnitude.
Technical Paper

Statistical Simulations to Evaluate the Methods of the Construction of Injury Risk Curves

2011-11-07
2011-22-0015
Several statistical methods are currently used to build injury risk curves in the biomechanical field. These methods include the certainty method (Mertz et al. 1996), Mertz/Weber method (Mertz and Weber 1982), logistic regression (Kuppa et al. 2003, Hosmer and Lemeshow 2000), survival analysis with Weibull distribution (Kent et al. 2004, Hosmer and Lemeshow 2000), and the consistent threshold estimate (CTE) (Nusholtz et al. 1999, Di Domenico and Nusholtz 2005). There is currently no consensus on the most accurate method to be used and no guidelines to help the user to choose the more appropriate one. Injury risk curves built for the WorldSID 50th side impact dummy with these different methods could vary significantly, depending on the sample considered (Petitjean et al. 2009). As a consequence, further investigations were needed to determine the fields of application of the different methods and to recommend the best statistical method depending on the biomechanical sample considered.
Technical Paper

Proposed Method for Development of Small Female and Midsize Male Thorax Dynamic Response Corridors in Side and Forward Oblique Impact Tests

2015-11-09
2015-22-0007
Despite the increasing knowledge of the thorax mechanics, the effects of inter-individual differences on the mechanical response are difficult to take into account. Several methods are available in the literature to refine the biofidelity corridors or to extrapolate them to other populations (eg: children, small females, large males). Because of the lack of concrete cases, the relevance of the assumptions is rarely investigated. In 2014, Baudrit et al. published data on thorax dynamic responses of small female and midsize male Post Mortem Human Subjects in side and forward oblique impact tests. The impactor mass was 23.4 kg for all the tests and the nominal impact speed was 4.3 m/s. The diameter of the rigid disk was 130 and 152 mm respectively for the small female specimens and for the midsize male specimens. The authors found that the maximum impact force was a function of the total body mass for each loading.
Technical Paper

New Reference PMHS Tests to Assess Whole-Body Pedestrian Impact Using a Simplified Generic Vehicle Front-End

2017-11-13
2017-22-0012
This study aims to provide a set of reference post-mortem human subject tests which can be used, with easily reproducible test conditions, for developing and/or validating pedestrian dummies and computational human body models against a road vehicle. An adjustable generic buck was first developed to represent vehicle front-ends. It was composed of four components: two steel cylindrical tubes screwed on rigid supports in V-form represent the bumper and spoiler respectively, a quarter of a steel cylindrical tube represents the bonnet leading edge, and a steel plate represents the bonnet. These components were positioned differently to represent three types of vehicle profile: a sedan, a SUV and a van. Eleven post-mortem human subjects were then impacted laterally in a mid-gait stance by the bucks at 40 km/h: three tests with the sedan, five with the SUV, and three with the van.
Technical Paper

Abdominal Response to High-Speed Seatbelt Loading

2002-11-11
2002-22-0004
This study was conducted to address injury risk due to high-speed loading of the abdomen by a seatbelt during the pretension phase. Indeed, a better coupling of occupants to the structure of the vehicle in frontal impact can be achieved by a strong pretension of the lap belt. However, out of position considerations have to be taken into account in the development of pretension systems. In particular, when the lap belt is on the abdomen instead of the pelvis at the time of pretension, the penetration of the belt into the abdomen should not lead to injuries. Given the sensitivity of pyrotechnic pre-tensioners to the resistance that they encounter, it is important to have an understanding of the behaviors of both human and dummy abdomens in order to evaluate injury risk. These data are indispensable for the evaluation, with dummy tests, of the effects of pre-tensioners on occupants and for the estimation of the levels of injury risk.
Technical Paper

The Effect of Angle on the Chest Injury Outcome in Side Loading

2009-11-02
2009-22-0014
Thoracic injury criteria and injury risk curves in side impact are based on impactor or sled tests, with rigid or padded surfaces while airbags are very common on current cars. Besides, the loading is generally pure lateral while real crashes or regulations can generate oblique loadings. Oblique tests were found in the literature, but no conclusion was drawn with regard to the effect of the direction on the injury outcome. In order to address these two limitations, a series of 17 side airbag tests were performed on Post Mortem Human Subjects (PMHS) at different severities and angles. The subjects were instrumented with accelerometers on the spine and strain gauges on the ribs. They were loaded by an unfolded airbag at different distances in pure lateral or 30 degrees forward. The airbag forces ranged from 1680 N to 6300 N, the injuries being up to 9 separated fractured ribs. This paper provides the test results in terms of physical parameters and injury outcome of the 17 subjects.
Technical Paper

Finite Element Simulation Study of a Frontal Driver Airbag Deployment for Out-Of-Position Situations

2003-10-27
2003-22-0011
As more and more active restraint devices are added by vehicle manufacturers for occupant protection, the history of driver frontal airbags illustrates that the design performance of such devices for in-position (IP) occupants often have to be limited in order to reduce their aggressiveness for out-of-position (OOP) situations. As of today, a limited number of publications dealing with FE simulation of airbag deployment for OOP are available. The objective of our study was to evaluate the feasibility of airbag deployment simulations based on an extensive set of well-defined physical test matrix. A driver frontal airbag was chosen (European mid-size car sample) for this study. It was deployed against a force plate (14 tests in a total of 6 configurations), and used with Hybrid III 50th percentile dummy (HIII) in OOP tests (6 tests, 4 configurations). Special attention was paid to control the boundary conditions used in experiments in order to improve the modelling process.
Technical Paper

Rib Cage Strain Pattern as a Function of Chest Loading Configuration

2008-11-03
2008-22-0009
Rib fractures are the most frequent types of AIS3+ chest injuries and constitute a good indication of severity. However, the behavior of the rib cage is not well documented, and though chest external measurements are often provided in the literature, the strains of the ribs themselves during a crash remain unknown. In order to address this issue, a test protocol was developed, where the ribs of 8 PMHS were equipped with up to 96 strain gauges. In a first series of 3 tests, the subjects were seated upright and their chests were loaded by a 23.4 kg impactor propelled at 4.3 m/s in 0° (pure frontal), 60° (oblique) and 90° (pure lateral) directions. In a second series of 3 tests, the subjects were loaded by the deployment of an unfolded airbag in the same 3 directions. Finally, a third series of 2 tests was performed with airbags at different distances from the subjects, in a pure lateral direction. This paper presents the results of the tests and an analysis of the strain patterns.
X