Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

The Design and Evaluation of EMB Actuator Scheme

2017-09-17
2017-01-2509
Electromechanical Braking System (EMB) stops the wheel by motor and related enforce mechanism to drive braking pads to clamp the friction plate. It is compact in sized as well as faster in response, which solves the issue of potential leakage and slows response of traditional hydraulic brake system. The institutions at home and abroad have put forward all kinds of new structural schemes of EMB. At present, there are various EMB structural schemes, but the analysis and evaluation of these schemes are relatively few. In this paper, on the basis of a large number of research, the EMB actuator is modular decomposed according to function ,then the parametric 3D model library of each function module is established. According to brake requirements of the target vehicle, a development platform is set up to match EMB actuator structure scheme quickly.
Technical Paper

Intelligent Cockpit Operation System: Indirect Rotary Transducer for an Automotive Screen Interface

2022-05-30
2022-01-5034
Indirect rotary transducer for an automotive screen interface is an innovative solution for the smart cockpit. The primary objective of this study is to design an indirect rotary transducer system, and study its feasibility in the smart cockpit. The working theory of this designed system is that the magnetic induction hall electronic chip can detect changes in the magnetic field. Several tests have been conducted, which show that the hypothesis of dangling operating system achieves the same effect as a hard-wired operating system. The results of the experiment indicate that the magnetic induction hall sensor can meet the specification of traditional hard-wired operating system. This system is a good concept for intelligent cab driving, which can fully meet the needs of the current market.
Technical Paper

Open-Loop Characteristics Analysis and Control of High Speed On-Off Valve

2018-10-05
2018-01-1868
In the process of ABS control, the Anti-lock braking system (ABS) of the vehicle adjusts the wheel cylinder brake pressure through the hydraulic actuator so as to control the movement of the wheel. The high-speed on-off valve (HSV) is the key components of the Anti-lock braking system. HSV affects the performance of the hydraulic actuator and the valve response characteristics affects the Anti-lock braking system pressure response as well as braking effect. In this paper, the electromagnetic field theory and flow field theory of HSV are analyzed, and simulation analysis of electromagnetic field characteristics of HSV is done by ANSYS. Combined with the ANSYS analysis results, a precise physical model of HSV is constructed in AMESim. Meanwhile, the valve response characteristics are analyzed. Moreover, the influence of different wheel cylinder diameter and PWM carrier frequency on hydraulic braking force characteristics are analyzed.
Technical Paper

Novel Electromechanical Brake Actuator Adopting the Two Way Ball Screw

2015-09-27
2015-01-2698
In this paper, a novel Electromechanical Brake actuator (EMB) is redesigned aimed at an electric vehicle driven by wheel hub motor. The two way ball screw is adopted in this mechanism. Clearance automatic adjustment and parking braking function is added in this mechanism. As a consequence, fast braking response is achieved and the wear difference of the inner and outer pads can be minimized and the initial braking force can also be improved. The electric vehicle is based on a traditional chassis. In this electric vehicle which driven by wheel hub motor, the brake disc and brake actuator will be correspondingly moved inside because wheel hub motor will take up inner space of wheel hub. As a result, the actuator might interfere with the suspension and steering systems and influence hard spot of chassis design. To solve this problem, conversely installed caliper concept is used in this paper.
Technical Paper

Antilock Brake Control System for Four-Wheel-Drive Electric Vehicle with Electro-hydraulic Braking based on Precise Control of Hydraulic Braking Force

2015-04-14
2015-01-1573
With the objective to regulate hydraulic pressure accurately by controlling high speed on-off valve (HSV), finite element models are parameterized based on measured parameters of an ABS hydraulic actuator unit (HCU). The data that reflects transient electromagnetic characteristics of HSV is selected with finite element numerical simulation. Taking full advantage of those data, accurate physical models of HSV are built with other parts of hydraulic braking system. Then a new system structure is proposed to control hydraulic pressure. Not only do simulation results show ideal control effect, but also hydraulic braking system can be controlled under arbitrary input signal. Accordingly, hydraulic braking force can achieve fine regulation. Finally, the hydraulic braking system is utilized to design antilock brake control system for four-wheel-drive electric vehicle with electro-hydraulic braking. That kind of system is established on the basis of hierarchical control structure.
Technical Paper

Deep 4D Automotive Radar-Camera Fusion Odometry with Cross-Modal Transformer Fusion

2023-12-20
2023-01-7040
Many learning-based methods estimate ego-motion using visual sensors. However, visual sensors are prone to intense lighting variations and textureless scenarios. 4D radar, an emerging automotive sensor, complements visual sensors effectively due to its robustness in adverse weather and lighting conditions. This paper presents an end-to-end 4D radar-visual odometry (4DRVO) approach that combines sparse point cloud data from 4D radar with image information from cameras. Using the Feature Pyramid, Pose Warping, and Cost Volume (PWC) network architecture, we extract 4D radar point features and image features at multiple scales. We then employ a hierarchical iterative refinement approach to supervise the estimated pose. We propose a novel Cross-Modal Transformer (CMT) module to effectively fuse the 4D radar point modality, image modality, and 4D radar point-image connection modality at multiple scales, achieving cross-modal feature interaction and multi-modal feature fusion.
X