Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

2017-11-13
2016-32-0041
Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
Journal Article

Genetic Algorithm based Automated Calibration Tool for Numerical Selective Catalytic Reduction (SCR) Models

2009-04-20
2009-01-1265
An automated process was developed for the calibration of numerical aftertreatment models. The chemical kinetic mechanism examined in this case was part of a simplified SCR model. The process adopted for calibrating the SCR model was based on a micro-population multi-objective genetic algorithm. The algorithm developed was used to calibrate the SCR model using data derived from another, more detailed model to ensure that the evaluation focused only on the effectiveness of the calibration process and was not affected by issues of experimental inaccuracies or details of the model chemistry involved.
Journal Article

Properties of Partial-Flow and Coarse Pore Deep Bed Filters Proposed to Reduce Particle Emission of Vehicle Engines

2009-04-20
2009-01-1087
Four of these Particulate Reduction Systems (PMS) were tested on a passenger car and one of them on a HDV. Expectation of the research team was that they would reach at least a PM-reduction of 30% under all realistic operating conditions. The standard German filter test procedure for PMS was performed but moreover, the response to various operating conditions was tested including worst case situations. Besides the legislated CO, NOx and PM exhaust-gas emissions, also the particle count and NO2 were measured. The best filtration efficiency with one PMS was indeed 63%. However, under critical but realistic conditions filtration of 3 of 4 PMS was measured substantially lower than the expected 30 %, depending on operating conditions and prior history, and could even completely fail. Scatter between repeated cycles was very large and results were not reproducible. Even worse, with all 4 PMS deposited soot, stored in these systems during light load operation was intermittently blown-off.
Journal Article

Efficacy of EGR and Boost in Single-Injection Enabled Low Temperature Combustion

2009-04-20
2009-01-1126
Exhaust gas recirculation, fuel injection strategy and boost pressure are among the key enablers to attain low NOx and soot emissions simultaneously on modern diesel engines. In this work, the individual influence of these parameters on the emissions are investigated independently for engine loads up to 8 bar IMEP. A single-shot fuel injection strategy has been deployed to push the diesel cycle into low temperature combustion with EGR. The results indicated that NOx was a stronger respondent to injection pressure levels than to boost when the EGR ratio is relatively low. However, when the EGR level was sufficiently high, the NOx was virtually grounded and the effect of boost or injection pressure becomes irrelevant. Further tests indicated that a higher injection pressure lowered soot emissions across the EGR sweeps while the effect of boost on the soot reduction appeared significant only at higher soot levels.
Journal Article

Application of a Flow Field Based Heat Transfer Model to Hydrogen Internal Combustion Engines

2009-04-20
2009-01-1423
A realistic modeling of the wall heat transfer is essential for an accurate analysis and simulation of the working cycle of internal combustion engines. Empirical heat transfer formulations still dominate the application in engine process simulations because of their simplicity. However, experiments have shown that existing correlations do not provide satisfactory results for all the possible operation modes of hydrogen internal combustion engines. This paper describes the application of a flow field-based heat transfer model according to Schubert et al. [1]. The models strength is a more realistic description of the required characteristic velocity; considering the influence of the injection on the global turbulence and on the in-cylinder flow field results in a better prediction of the wall heat transfer during the compression stroke and for operations with multiple injections. Further an empirical hypothesis on the turbulence generation during combustion is presented.
Journal Article

Optimal Use of E85 in a Turbocharged Direct Injection Engine

2009-04-20
2009-01-1490
Ford Motor Company is introducing “EcoBoost” gasoline turbocharged direct injection (GTDI) engine technology in the 2010 Lincoln MKS. A logical enhancement of EcoBoost technology is the use of E85 for knock mitigation. The subject of this paper is the optimal use of E85 by using two fuel systems in the same EcoBoost engine: port fuel injection (PFI) of gasoline and direct injection (DI) of E85. Gasoline PFI is used for starting and light-medium load operation, while E85 DI is used only as required during high load operation to avoid knock. Direct injection of E85 (a commercially available blend of ∼85% ethanol and ∼15% gasoline) is extremely effective in suppressing knock, due to ethanol's high inherent octane and its high heat of vaporization, which results in substantial cooling of the charge. As a result, the compression ratio (CR) can be increased and higher boost levels can be used.
Journal Article

Well-To-Wheels Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

2009-04-20
2009-01-1309
The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model incorporated fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). Based on PSAT simulations of the blended charge depleting (CD) operation, grid electricity accounted for a share of the vehicle’s total energy use ranging from 6% for PHEV 10 to 24% for PHEV 40 based on CD vehicle mile traveled (VMT) shares of 23% and 63%, respectively. Besides fuel economy of PHEVs and type of on-board fuel, the type of electricity generation mix impacted the WTW results of PHEVs, especially GHG emissions.
Journal Article

Hydrogen in Diesel Exhaust: Effect on Diesel Oxidation Catalyst Flow Reactor Experiments and Model Predictions

2009-04-20
2009-01-1268
Engine operating strategies typically geared towards higher fuel economy and lower NOx widely affect exhaust composition and temperature. These exhaust variables critically drive the performance of After Treatment (AT) components, and hence should guide their screening and selection. Towards this end, the effect of H2 level in diesel exhaust on the performance of a Diesel Oxidation Catalyst (DOC) was studied using flow reactor experiments, vehicle emission measurements and mathematical models. Vehicle chassis dynamometer data showed that exhaust from light-duty and heavy-duty diesel trucks contained very little to almost no H2 (FTP average CO/H2 ∼ 40 to 70) as compared to that of a gasoline car exhaust (FTP average CO/H2 ∼ 3). Two identical flow reactor experiments, one with H2 (at CO/H2 ∼ 3) and another with no H2 in the feed were designed to screen DOCs under simulated feed gas conditions that mimicked these two extremes in the exhaust H2 levels.
Journal Article

A Urea Decomposition Modeling Framework for SCR Systems

2009-04-20
2009-01-1269
Selective catalytic reduction (SCR) is allowing diesel engines to reach NOx emission levels which are unachievable in-cylinder. This technology is still evolving, and new catalyst formulations which provide higher performance and greater durability continue to be developed. Usually, their performance is measured on a flow reactor using ammonia as the reductant. However, in mobile applications a urea-water solution is used instead, and urea decomposition by thermolysis and hydrolysis provides the required ammonia to the catalyst. It is well known that urea decomposition is incomplete by the inlet face of the converter, and this is at least one reason why on-engine performance is generally lower than would be expected from reactor tests. Previous modeling of urea-water droplets has focused on developing detailed sub-models that can be implemented into computational fluid dynamics (CFD) codes.
Journal Article

Exhaust Valve & Valve Seat Insert – Development for an Industrial LPG Application

2009-05-13
2009-01-1602
Automotive engines are regularly utilized in the material handling market where LPG is often the primary fuel used. When compared to gasoline, the use of gaseous fuels (LPG and CNG) as well as alcohol based fuels, often result in significant increases in valve seat insert (VSI) and valve face wear. This phenomenon is widely recognized and the engine manufacturer is tasked to identify and incorporate appropriate valvetrain material and design features that can meet the ever increasing life expectations of the end-user. Alternate materials are often developed based on laboratory testing – testing that may not represent real world usage. The ultimate goal of the product engineer is to utilize accelerated lab test procedures that can be correlated to field life and field failure mechanisms, and then select appropriate materials/design features that meet the targeted life requirements.
Journal Article

Empirical Modeling of Transient Emissions and Transient Response for Transient Optimization

2009-04-20
2009-01-1508
Empirical models for engine-out oxides of Nitrogen (NOx) and smoke emissions have been developed for the purpose of minimizing transient emissions while maintaining transient response. Three major issues have been addressed: data acquisition, data processing and modeling method. Real and virtual transient parameters have been identified for acquisition. Accounting for the phase shift between transient engine events and transient emission measurements has been shown to be very important to the quality of model predictions. Several methods have been employed to account for the transient transport delays and sensor lags which constitute the phase shift. Finally several different empirical modeling methods have been used to determine the most suitable modeling method for transient emissions. These modeling methods include several kinds of neural networks, global regression and localized regression.
Journal Article

Enabling Flex Fuel Vehicle Emissions Testing – Test Cell Modifications and Data Improvements

2009-04-20
2009-01-1523
The challenges of flex-fuel vehicle (FFV) emissions measurements have recently come to the forefront for the emissions testing community. The proliferation of ethanol blended gasoline in fractions as high as 85% has placed a new challenge in the path of accurate measures of NMHC and NMOG emissions. Test methods need modification to cope with excess amounts of water in the exhaust, assure transfer and capture of oxygenated compounds to integrated measurement systems (impinger and cartridge measurements) and provide modal emission rates of oxygenated species. Current test methods fall short of addressing these challenges. This presentation will discuss the challenges to FFV testing, modifications made to Ford Motor Company’s Vehicle Emissions Research Laboratory test cells, and demonstrate the improvements in recovery of oxygenated species from the vehicle exhaust system for both regulatory measurements and development measurements.
Journal Article

Development of a Fuel Injection Strategy for Partially Premixed Compression Ignition Combustion

2009-04-20
2009-01-1527
A production version of a V-8 engine was redesigned to run on partially premixed charge compression ignition (PCCI) combustion mode with conventional diesel fuel. The objective of the PCCI combustion experiments was to obtain low engine-out nitrogen oxide (NOx) and after-treatment tolerant soot emission level. Two fuel injection strategies were used during the PCCI combustion experiments: a) pilot-with-main injection strategy (Pil-M), b) pilot-with-main-and-post (PMP) injection strategy. In the Pil-M injection strategy, a significant fraction of the fuel was delivered early during the compression stroke. The early pilot helped to prepare a lean-mixture of enhanced homogeneity before the combustion was initiated. The combustion of this pilot injection followed by the main combustion helped to reduce soot for a constant NOx value. The pilot-injection timing and quantity had to be selected appropriately to retain the fuel-efficiency.
Journal Article

Optimizing Precision and Accuracy of Quantitative PLIF of Acetone as a Tracer for Hydrogen Fuel

2009-04-20
2009-01-1534
Quantitative planar laser-induced fluorescence (PLIF) of gaseous acetone as a fuel-tracer has been used in an optically accessible engine, fueled by direct hydrogen injection. The purpose of this article is to assess the accuracy and precision of the measurement and the associated data reduction procedures. A detailed description of the acetone seeding system is given as well. The key features of the experiment are a high-pressure bubbler saturating the hydrogen fuel with acetone vapor, direct injection into an optical engine, excitation of acetone fluorescence with an Nd:YAG laser at 266 nm, and detection of the resulting fluorescence by an unintensified camera. Key steps in the quantification of the single-shot imaging data are an in-situ calibration and a correction for the effect of local temperature on the fluorescence measurement.
Journal Article

Cost and Fuel Efficient SCR-only Solution for Post-2010 HD Emission Standards

2009-04-20
2009-01-0915
A promising SCR-only solution is presented to meet post-2010 NOx emission targets for heavy duty applications. The proposed concept is based on an engine from a EURO IV SCR application, which is considered optimal with respect to fuel economy and costs. The addition of advanced SCR after treatment comprising a standard and a close-coupled SCR catalyst offers a feasible emission solution, especially suited for EURO VI. In this paper, results of a simulation study are presented. This study concentrates on optimizing SCR deNOx performance. Simulation results of cold start FTP and WHTC test cycles are presented to demonstrate the potential of the close-coupled SCR concept. Comparison with measured engine out emissions of an EGR engine shows that a close-coupled SCR catalyst potentially has NOx reduction performance as good as EGR. Practical issues regarding the use of an SCR catalyst in close-coupled position will be addressed, as well as engine and exhaust layout.
Journal Article

Evaluation of SCR Catalyst Technology on Diesel Particulate Filters

2009-04-20
2009-01-0910
Selective Catalytic Reduction (SCR) catalysts have been demonstrated as effective for controlling NOx emissions from diesel engines, maintaining high NOx conversion even after the extended high temperature exposure encountered in systems with active filter regenerations. As future diesel emission regulations are expected to be further reduced, packaging a large volume of SCR catalysts in diesel exhaust systems, along with DOC and particulate filter catalysts, will be challenging. One method to reduce the total volume of catalysts in diesel exhaust systems is to combine the SCR and DPF catalysts by coating SCR catalyst technology on particulate filters. In this work, engine evaluation of SCR coated filters has been conducted to determine the viability of the technology. Steady-state engine evaluations demonstrated that high NOx conversions can be achieved for SCR coated filters after high temperature oven aging.
Journal Article

SCR Catalyst Systems Optimized for Lightoff and Steady-State Performance

2009-04-20
2009-01-0901
A laboratory study was performed to optimize a zoned configuration of an iron (Fe) SCR catalyst and a copper (Cu) SCR catalyst in order to provide high NOx conversion at lean A/F ratios over a broad range of temperature for diesel and lean-burn gasoline applications. With an optimized space velocity of 8,300 hr-1, a 67% (by volume) Fe section followed by a 33% Cu section provided at least 80% NOx conversion from approximately 230°C to 640°C when evaluated with 500 ppm NO and NH3. To improve the lean lightoff performance of the SCR catalyst system during a cold start, a Cu SCR catalyst that was 1/4 as long as the rear Cu SCR catalyst was placed in front of the Fe SCR catalyst. When evaluated with an excess of NH3 (NH3/NO ratio of 2.2), the Cu+Fe+Cu SCR system had significantly improved lightoff performance relative to the Fe+Cu SCR system, although the front Cu SCR catalyst did decrease the NOx conversion at temperatures above 475°C by oxidizing some of the NH3 to N2 or NO.
Journal Article

Laboratory Study of Soot, Propylene, and Diesel Fuel Impact on Zeolite-Based SCR Filter Catalysts

2009-04-20
2009-01-0903
Selective Catalytic Reduction (SCR) catalysts have been designed to reduce NOx with the assistance of an ammonia-based reductant. Diesel Particulate Filters (DPF) have been designed to trap and eventually oxidize particulate matter (PM). Combining the SCR function within the wall of a high porosity particulate filter substrate has the potential to reduce the overall complexity of the aftertreatment system while maintaining the required NOx and PM performance. The concept, termed Selective Catalytic Reduction Filter (SCRF) was studied using a synthetic gas bench to determine the NOx conversion robustness from soot, coke, and hydrocarbon deposition. Soot deposition, coke derived from propylene exposure, and coke derived from diesel fuel exposure negatively affected the NOx conversion. The type of soot and/or coke responsible for the inhibited NOx conversion did not contribute to the SCRF backpressure.
Journal Article

Analysis of Compromising Degree of an Internal Combustion Engine Using Biodiesel

2009-04-20
2009-01-0895
This work intends to present a study about the application of a standard methodology for the evaluation of the mechanical components compromise as result of the use of biodiesel, based on the lubricating oil analyses. The fuel oil that will be analyzed is produced in PUCRS' Faculty of Chemistry. As we know, the physical-chemical analysis of lubricating oils can indicate a series of parameters that allow valuing the quality and the compromising degree of the mechanical engine components. The results of these analyses will be based on tests in an Electronic Microscopy. This type of analysis will allow us to determine the quality of the lubricating oil, degradation and contamination with metal materials (mechanical compromising). The work presupposes the functioning of Diesel engine cycle with several proportions of biodiesel (B2, B5, B10, B20 and B100).
Journal Article

The Poisoning and Desulfation Characteristics of Iron and Copper SCR Catalysts

2009-04-20
2009-01-0900
A laboratory study was performed to assess the effects of SO2 poisoning on the NOx conversion of iron (Fe) and copper (Cu) SCR catalysts. Thermally aged samples of the catalysts were poisoned with SO2 under lean conditions. At various times during the poisonings, the samples were evaluated for NOx conversion with NO and NH3 using lean temperature ramps. The low temperature NOx conversions of both catalysts decreased by 10 to 20% after 1 to 4 hours of poisoning but were stable with continued exposure to the SO2. The poisoned Cu SCR catalyst could be desulfated repeatedly with 5 minutes of lean operation at 600°C. Initially, the poisoned Fe SCR catalyst required 5 minutes of lean operation at 750°C to recover its maximum NOx conversion.
X