Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Modeling Dual-Arm Coordination for Posture: An Optimization-Based Approach

2005-06-14
2005-01-2686
In the field of human modeling, there is an increasing demand for predicting human postures in real time. However, there has been minimal progress with methods that can incorporate multiple limbs with shared degrees of freedom (DOFs). This paper presents an optimization-based approach for predicting postures that involve dual-arm coordination with shared DOFs, and applies this method to a 30-DOF human model. Comparisons to motion capture data provide experimental validation for these examples. We show that this optimization-based approach allows dual-arm coordination with minimal computational cost. This new approach also easily extends to models with a higher number of DOFs and additional end-effectors.
Technical Paper

Optimization-Based Dynamic Motion Simulation and Energy Expenditure Prediction for a Digital Human

2005-06-14
2005-01-2717
This paper presents an optimization-based algorithm for simulating the dynamic motion of a digital human. We also formulate the metabolic energy expenditure during the motion, which is calculated within our algorithm. This algorithm is implemented and applied to Santos™, an avatar developed at The University of Iowa. Santos™ is a part of a virtual environment for conducting digital human analysis consisting of posture prediction, motion prediction, and physiology studies. This paper demonstrates our dynamic motion algorithm within the Santos™ virtual environment. Mathematical evaluations of human performance are essential to any effort to compare various ergonomic designs. In fact, the human factors design process can be formulated as an optimization problem that maximizes human performance. In particular, an optimal design must be found while taking into consideration the effects of different motions and hand loads corresponding to a number of tasks.
X