Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Ash Accumulation and Impact on Sintered Metal Fiber Diesel Particulate Filters

2015-04-14
2015-01-1012
While metal fiber filters have successfully shown a high degree of particle retention functionality for various sizes of diesel engines with a low pressure drop and a relatively high filtration efficiency, little is known about the effects of lubricant-derived ash on the fiber filter systems. Sintered metal fiber filters (SMF-DPF), when used downstream from a diesel engine, effectively trap and oxidize diesel particulate matter via an electrically heated regeneration process where a specific voltage and current are applied to the sintered alloy fibers. In this manner the filter media essentially acts as a resistive heater to generate temperatures high enough to oxidize the carbonaceous particulate matter, which is typically in excess of 600°C.
Technical Paper

Advanced RF Particulate Filter Sensing and Controls for Efficient Aftertreatment Management and Reduced Fuel Consumption

2015-04-14
2015-01-0996
Although designed for the purpose of reducing engine-out Particulate Matter (PM) emissions to meet or exceed mandated emissions regulations, the particulate filter also incurs a fuel economy penalty. This fuel penalty is due to the increased exhaust flow restriction attributed to the PM accumulated in the filter, in addition to fuel consumed for active regeneration. Unlike the soot which may be oxidized through the regeneration process, incombustible material or ash continues to build-up in the filter following each regeneration event. Currently pressure- and model-based controls are used to provide an indirect estimate of the loading state of the particulate filter, in order to manage the filter operation and determine when to regenerate the filter. The challenges associated with pressure- and model-based particulate filter control over real-world operating conditions are well-known.
Technical Paper

Modeling Study of Metal Fiber Diesel Particulate Filter Performance

2015-04-14
2015-01-1047
Sintered metal fiber (SMF) diesel particulate filters (DPF) has more than one order of magnitude lower pressure drop compared to a granular or reaction-born DPF of the same (clean) filtration efficiency. To better understand the filtration process and optimize the filter performance, metal fiber filter models are developed in this study. The major previous theoretical models for clean fibrous filter are summarized and compared with experimental data. Furthermore, a metal fiber DPF soot loading model, using similar concept developed in high efficiency particulate air (HEPA) filter modeling, is built to simulate filter soot loading performance. Compared with experimental results, the soot loading model has relatively good predictions of filter pressure drop and filtration efficiency.
X