Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Ammonia Loading Detection of Zeolite SCR Catalysts using a Radio Frequency based Method

2015-04-14
2015-01-0986
Ammonia adsorption on the catalyst surface is a crucial step in the selective catalytic reduction of nitrogen oxides over zeolites with NH3 as the reducing agent. In this study, two small pore zeolites with chabazite frameworks, H-SSZ-13 and Cu exchanged SSZ-13, are examined. Adsorption of NH3 on the zeolite causes changing electrical properties of the material. They can be detected by a radio frequency based technique. We have found that with this method it is possible to determine the amount of adsorbed NH3 on these catalysts, examining both the influences of temperature and NH3/NO feed gas ratio. At constant temperature, a fairly linear correlation between the resonance frequency and the amount of adsorbed ammonia was observed. Furthermore, this method also allows differentiation between some of the NH3 adsorption sites.
Journal Article

TWC+LNT/SCR Systems for Satisfying Tier 2, Bin 2 Emission Standards on Lean-Burn Gasoline Engines

2015-04-14
2015-01-1006
A laboratory study was performed to assess the potential capability of TWC+LNT/SCR systems to satisfy the Tier 2, Bin 2 emission standards for lean-burn gasoline applications. It was assumed that the exhaust system would need a close-coupled (CC) TWC, an underbody (U/B) TWC, and a third U/B LNT/SCR converter to satisfy the emission standards on the FTP and US06 tests while allowing lean operation for improved fuel economy during select driving conditions. Target levels for HC, CO, and NOx during lean/rich cycling were established. Sizing studies were performed to determine the minimum LNT/SCR volume needed to satisfy the NOx target. The ability of the TWC to oxidize the HC during rich operation through steam reforming was crucial for satisfying the HC target.
Journal Article

Passive TWC+SCR Systems for Satisfying Tier 2, Bin 2 Emission Standards on Lean-Burn Gasoline Engines

2015-04-14
2015-01-1004
A laboratory study was performed to assess the potential capability of passive TWC+SCR systems to satisfy the Tier 2, Bin 2 emission standards for lean-burn gasoline applications. In this system, the TWC generates the NH3 for the SCR catalyst from the feedgas NOx during rich operation. Therefore, this approach benefits from high feedgas NOx during rich operation to generate high levels of NH3 quickly and low feedgas NOx during lean operation for a low rate of NH3 consumption. It was assumed that the exhaust system needed to include a close-coupled (CC) TWC, an underbody (U/B) TWC, and an U/B SCR converter to satisfy the emission standards during the FTP and US06 tests while allowing lean operation for improved fuel economy during select driving conditions. Target levels for HC, CO, and NOx during lean/rich cycling were established. With a 30 s lean/10 s rich cycle and 200 ppm NO lean, 1500 ppm NO rich and the equivalent of 3.3 L of SCR volume were required to satisfy the NOx target.
X