Refine Your Search

Topic

Author

Search Results

Journal Article

Characterization of Flow Drill Screwdriving Process Parameters on Joint Quality

2014-09-16
2014-01-2241
A state of the art proprietary method for aluminum-to-aluminum joining in the automotive industry is Resistance Spot Welding. However, with spot welding (1) structural performance of the joint may be degraded through heat-affected zones created by the high temperature thermal joining process, (2) achieving the double-sided access necessary for the spot welding electrodes may limit design flexibility, and (3) variability with welds leads to production inconsistencies. Self-piercing rivets have been used before; however they require different rivet/die combinations depending on the material being joined, which adds to process complexity. In recent years the introductions of screw products that combine the technologies of friction drilling and thread forming have entered the market. These types of screw products do not have these access limitations as through-part connections are formed by one-sided access using a thermo-mechanical flow screwdriving process with minimal heat.
Journal Article

Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

2012-10-22
2012-01-2148
NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.
Technical Paper

A Summary of the Cassini System-Level Thermal Balance Test: Engineering Subsystems

1997-07-01
972475
The Cassini spacecraft, NASA's mission to investigate the Saturn system, has undergone a system-level thermal balance test program to permit verification of the engineering subsystem thermal designs in the simulated worst-case environments. Additionally, other objectives such as functional checkouts, collection of thermal data for analytical model adjustment, vacuum drying of propellant tanks, and flight temperature transducer verification were also completed. In the interest of cost and schedule, transient off-Sunpoint conditions were not tested. The testing demonstrated that the required system resources such as heater power and radiator area were adequate for all engineering subsystems. The only changes required from the results were related to the operation of some of the subsystems. In the instance of the thruster cluster assemblies, allowable flight temperature limits were exceeded for the assumed operational environment.
Technical Paper

Tunable Diode Lasers (TDL) for Spectroscopy and Environmental Monitoring

1997-07-01
972490
The current status of III-V semiconductor diode lasers emitting between 1 -5 μm wavelengths to be used as light sources for absorption spectroscopy is reviewed. The emission wavelength of the laser is chosen to coincide with the primary absorption line of a molecule or one of its many overtones. The lasers, with a single longitudinal mode emission, are wavelength tuned over several angstroms by modulating the drive current of the device. This sweeping of the wavelength leads to the nomenclature tunable diode laser or TDL. Single mode distributed feedback (DFB) strained layer InGaAs(P) lasers grown on InP substrates with emission wavelengths from 1.2 to 2.06 μm have been developed at JPL, and several devices will be used for planetary atmospheric studies for the first time.
Technical Paper

Thermal Challenges of Mars Exploration

1998-07-13
981686
The exploration of Mars is a major thrust of NASA. Some of the important goals of this exploration are the search for life; understanding the planet's evolution by in-situ and remote scientific measurements; developing an inventory of useful resources, including accessible water; and sample return as a precursor to human exploration. One of the key challenges of Mars's exploration hard-ware--- rovers, landers, probes, and science instruments -- is to be able to survive the planet's harsh environment on and below surface. This paper discusses the thermal challenges posed by relatively large temperature variations, analyses and experimental work done at JPL to address these challenges.
Technical Paper

Wear Resistance of Lunar Wheel Treads Made of Polymeric Fabrics

2009-04-20
2009-01-0065
The purpose of this research is to characterize the wear resistance of wheel treads made of polymeric woven and non-woven fabrics. Experimental research is used to characterize two wear mechanisms: (1) external wear due to large sliding between the tread and rocks, and (2) external wear due to small sliding between the tread and abrasive sand. Experimental setups include an abrasion tester and a small-scale merry-go-round where the tread is attached to a deformable rolling wheel. The wear resistance is characterized using various measures including, quantitatively, by the number of cycles to failure, and qualitatively, by micro-visual inspection of the fibers’ surface. This paper describes the issues related to each experiment and discusses the results obtained with different polymeric materials, fabric densities and sizes. The predominant wear mechanism is identified and should then be used as one of the criteria for further design of the tread.
Technical Paper

Development of Endurance Testing Apparatus Simulating Wheel Dynamics and Environment on Lunar Terrain

2010-04-12
2010-01-0765
This paper entails the design and development of a NASA testing system used to simulate wheel operation in a lunar environment under different loading conditions. The test system was developed to test the design of advanced nonpneumatic wheels to be used on the NASA All-Terrain Hex-Legged Extra-Terrestrial Explorer (ATHLETE). The ATHLETE, allowing for easy maneuverability around the lunar surface, provides the capability for many research and exploration opportunities on the lunar surface that were not previously possible. Each leg, having six degrees of freedom, allows the ATHLETE to accomplish many tasks not available on other extra-terrestrial exploration platforms. The robotic vehicle is expected to last longer than previous lunar rovers.
Technical Paper

The CHEMCAM Instrument on Mars Science Laboratory (MSL 11): First Laser Induced Breakdown Spectroscopy Instrument in Space!

2009-07-12
2009-01-2397
ChemCam is one of the 10 instrument suites on the Mars Science Laboratory, a martian rover being built by Jet Propulsion Laboratory, for the next NASA mission to Mars (MSL 2009). ChemCam is an instrument package consisting of two remote sensing instruments: a Laser-Induced Breakdown Spectrometer (LIBS) and a Remote Micro-Imager (RMI). LIBS provides elemental compositions of rocks and soils, while the RMI places the LIBS analyses in their geomorphologic context. Both instruments rely on an autofocus capability to precisely focus on the chosen target, located at distances from the rover comprised between 1 and 9 m for LIBS, and 2 m and infinity for RMI. ChemCam will help determine which samples, within the vicinity of the MSL rover, are of sufficient interest to use the contact and in-situ instruments for further characterization.
Technical Paper

Trade Studies of Selected Environmental Monitoring and Control Technologies

2009-07-12
2009-01-2544
In recent years, several different technologies have been considered for use in environmental monitoring and control of spacecraft habitat. These technologies have included monitoring for both water and air. This paper will discuss construction of a trade space for environmental monitoring technologies. Previous trade space metric approaches are reviewed and a new approach is outlined. Trade space considerations include the usual mass, power and volume, along with sensitivity, accuracy, speed of response, frequency of measurement and ease of use. These considerations will be discussed in the context of Constellation program vehicles. In addition to a new approach for trade space construction, this paper will briefly discuss the application of this trade space to a selection of technologies taken from NASA programs, ESA programs, COTS technologies and DoD programs.
Technical Paper

Development of Self-Healing High Temperature Film Capacitors for Power Electronics Applications

2010-11-02
2010-01-1726
There is a need to develop improved film capacitors for high temperature, high energy density and high reliability applications. The work reported here has resulted in self-healing capacitor technology applicable to a wide variety of polymer film substrates that prevents catastrophic failures and provides safe, reliable operation in power electronic circuits. This paper describes the performance of 500-2000 Volt metalized film capacitors operating at up to 160°C under a variety of duty conditions. Data on equivalent series resistance (ESR) and power dissipation (DF), peak and Root Means Square (RMS) current ratings, and other critical performance parameters are presented. The features and benefits of both dry wrap-and-fill and liquid-impregnated hermetically sealed constructions are discussed. This work was sponsored by the US Army Research Laboratory.
Technical Paper

Selection of an Effective Architecture for a Precursor Mission to Callisto

2003-07-07
2003-01-2430
One startling realization that's come from NASA's explorations of the satellites of Jupiter and Saturn is that the so-called “habitable zone” around our Sun may not be restricted to Earth's vicinity. The Galileo mission found conditions that might support life on two Jovian moons-Europa & Callisto. This raises the possibility of habitable zones elsewhere near the outer planets. Consideration of human missions beyond Mars, likely to occur sometime beyond the year 2040, exceeds the horizon of even the most advanced planning activities within NASA. During the next 25 to 30 years, robotic spacecraft are envisioned to explore several moons of outer planets, especially Europa and Titan. Since Callisto lies well outside Jupiter's radiation belt, and there is evidence of water ice there is a compelling rationale to send human explorers to that Jovian moon.
Technical Paper

Physiological Limits of Underpressure and Overpressure for Mechanical Counter Pressure Suits

2003-07-07
2003-01-2444
The first concept and early experiments of a mechanical counter pressure (MCP) spacesuit were published by Webb in the late 1960's. MCP provides an alternative approach to the conventional full pressure suit that bears some significant advantages, such as increased mobility, dexterity, and tactility. The presented ongoing research provides a thorough investigation of the physiological effect of mechanical counter pressure applied onto the human skin. In this study, we investigated local microcirculatory effects produced with negative and positive ambient pressure on the lower body as a preliminary study for a lower body garment. The data indicates that the positive pressure was less tolerable than negative pressure. Lower body negative and positive pressure cause various responses in skin blood flow due to not only blood shifts but also direct exposure to pressure differentials.
Technical Paper

Breadboard Development of the Advanced Inflatable Airlock System for EVA

2003-07-07
2003-01-2449
The advanced inflatable airlock (AIA) system was developed for the Space Launch Initiative (SLI). The objective of the AIA system is to greatly reduce the cost associated with performing extravehicular activity (EVA) from manned launch vehicles by reducing launch weight and volume from previous hard airlock systems such as the Space Shuttle and Space Station airlocks. The AIA system builds upon previous technology from the TransHab inflatable structures project, from Space Shuttle and Space Station Airlock systems, and from terrestrial flexible structures projects. The AIA system design is required to be versatile and capable of modification to fit any platform or vehicle needing EVA capability. During the basic phase of the program, the AIA conceptual design and key features were developed to help meet the SLI program goals of reduced cost and program risk.
Technical Paper

Advanced Inflatable Airlock System for EVA

2002-07-15
2002-01-2314
The Advanced Inflatable Airlock (AIA) System is currently being developed for the 2nd Generation Reusable Launch Vehicle (RLV). The objective of the AIA System is to greatly reduce the cost associated with performing extravehicular activity (EVA) from the RLV by reducing launch weight and volume from previous hard airlock systems such as the Space Shuttle and Space Station airlocks. The AIA System builds upon previous technology from the TransHab inflatable structures project, from Space Shuttle and Space Station Airlock systems, and from terrestrial flexible structures projects. The AIA system design is required to be versatile and capable of modification to fit any platform or vehicle needing EVA capability. This paper discusses the AIA conceptual design and key features that will help meet the 2nd Generation RLV program goals of reduced cost and program risk.
Technical Paper

Monitoring the Air Quality in a Closed Chamber Using an Electronic Nose

1997-07-01
972493
An Electronic Nose is being developed at JPL and Caltech for use in environmental monitoring in the International Space Station. The Electronic Nose (ENose) is an array of 32 polymer film conductometric sensors; the pattern of response may be deconvoluted to identify contaminants in the environment. An engineering test model of the ENose was used to monitor the air of the Early Human Test experiment at Johnson Space Center for 49 days. Examination of the data recorded by the ENose shows that major excursions in the resistance recorded in the sensor array may be correlated with events recorded in the Test Logs of the Test Chamber.
Technical Paper

A Summary of the Cassini System-Level Thermal Balance Test: Science Instruments

1997-07-01
972476
The Cassini spacecraft, NASA's mission to investigate the Saturn system, has undergone a system-level thermal balance test program to permit verification of the science instrument thermal designs in the simulated worst-case environments. Additionally, other objectives such as functional checkout, collection of thermal data for analytical model adjustment, and flight temperature transducer verification were also attained. In the interest of cost and schedule, transient off-sunpoint conditions were not tested. The test demonstrated that the required system resources such as heater power and radiator area were adequate. In the instance of the Cosmic Dust Analyzer, allowable flight temperature limits were violated, but this problem is being addressed without a significant impact to system resources or thermal design robustness. Finally, the thermal acceptability of a black Kapton “sock” was demonstrated for the magnetometer boom.
Technical Paper

Miniature, High-Resolution Quadrupole Mass-Spectrometer Array: Applications to Environmental Monitoring and Control

1997-07-01
972491
A miniature quadrupole mass spectrometer array has been designed and tested. It consists of 16 rods in a 4 x 4 array. The ionizer is of a miniature Nier-type, and the detector is a channel-type multiplier. The demonstrated mass range is 1-300 u, and the resolution of the system is 0.1 -0.5 u (FWHM), or m/Δm = 600. The present sensitivity is measured and calculated to be approximately 1 x 1012 counts/torr-sec. Applications to NASA missions will be outlined, along with military and commercial uses.
Technical Paper

Flexible Fabrics with High Thermal Conductivity for Advanced Spacesuits

2006-07-17
2006-01-2236
This paper describes the effort and accomplishments for developing flexible fabrics with high thermal conductivity (FFHTC) for spacesuits to improve thermal performance, lower weight and reduce complexity. Commercial and additional space exploration applications that require substantial performance enhancements in removal and transport of heat away from equipment as well as from the human body can benefit from this technology. Improvements in thermal conductivity were achieved through the use of modified polymers containing thermally conductive additives. The objective of the FFHTC effort is to significantly improve the thermal conductivity of the liquid cooled ventilation garment by improving the thermal conductivity of the subcomponents (i.e., fabric and plastic tubes).
Technical Paper

Airborne Endospore Bioburden as an Indicator of Spacecraft Cleanliness

2006-07-17
2006-01-2160
Bacterial endospores are ubiquitous in terrestrial environments as a result of their ability to persist through environmental extremes of moisture, chemical toxins, pressure, heat and UV radiation. Current studies suggest that Airborne Endospore Bioburden (AEB) may be used as an indicator of spacecraft cleanliness. AEB, as measured in closed environment air sampling under laboratory conditions and in the Environmental Control and Life Support System at Marshall Space Flight Center, has indicated that increased total counts of airborne endospores can be correlated to surface microbial contamination. Advanced detection methods using PDMS sampling techniques, the highly sensitive terbium-dipicolinic acid (Tb3+-DPA) endospore assay, and standard microbial monitoring methods can be used to track trends in the settling of airborne spores.
Technical Paper

Search for New High Temperature Thermoelectric Materials

1992-08-03
929424
Although important efforts are actually devoted to improve Si-Ge materials, their thermoelectric energy conversion efficiency remains relatively low and the adimensional ZT value does not exceed 1. Higher values can be obtained by investigating new materials. A search for new high temperature thermoelectric materials identified a certain number of compounds between transition metals and bismuth, antimony and germanium as potential candidates. Results of the preliminary synthesis of samples by a variety of techniques (Bridgman, mechanical alloying…) are presented as well as some electrical measurements. Some compounds showed interesting properties and need to be investigated in more details.
X