Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Development of a Prototype Pressure Swing CO2/H2O Removal System for an Advanced Spacesuit

1998-07-13
981673
NASA JSC has contracted with Hamilton Standard Space Systems International (HSSSI) to develop a combined CO2/H2O removal system for an advanced space suit. This system will operate with a novel solid amine sorbent that has demonstrated a large increase in capacity over previous solid amine sorbents. The concept will use two beds of the sorbent operating on a pressure swing removal process. This paper discusses the design, fabrication and testing of this prototype system. The overall system design consists of two sorbent beds, a spool valve for directing vacuum and process air, and a controller to monitor the overall process and switch the spool valve at the appropriate time. We will include a discussion of the quick-cast process used in the fabrication of major system components. Finally, we will present the results of testing the full-scale prototype at HSSSI, and its ability to remove CO2/H2O and be regenerated continuously.
Technical Paper

Micrometeoroid Penetration Hazards Assessment for the Shuttle EMU

1999-07-12
1999-01-1963
Micrometeoroid and orbital debris (MMOD) penetration hazards have been a concern for the large number of EVA’s (Extravehicular Activities) expected during the assembly and operation of the International Space Station (ISS). Earlier studies have shown large uncertainties in estimated spacesuit penetration risks. This paper reports the results of recent tests and analyses that have significantly expanded the Shuttle EMU (Extravehicular Mobility Unit) hypervelocity penetration database and clarified our understanding of the associated risks. The results of testing have been used to develop improved estimates of the cumulative risk of penetration during EVA's through the first ten years after the beginning of ISS construction. These analyses have shown that the risks of MMOD penetration during EVA will be somewhat less than the risk of a critical penetration of the ISS itself over the same ten-year period.
Technical Paper

ISS Water Reclamation System Design

1999-07-12
1999-01-1950
Hamilton Standard Space Systems International, Inc. (HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop a Water Processor Assembly (WPA) for the International Space Station (ISS) Water Processor Assembly. The WPA produces potable quality water from humidity condensate, carbon dioxide reduction water, water obtained from fuel cells, reclaimed urine distillate, shower, handwash and oral hygiene waste waters. This paper describes the WPA integration into the ISS Node 3. It details the substantial development history supporting the design and describes the WPA System characteristics and its physical layout.
Technical Paper

ISS Oxygen Generation Design Status

1999-07-12
1999-01-2116
Hamilton Standard Space Systems International, Inc. (HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop an Oxygen Generation Assembly (OGA) for the International Space Station (ISS). The International Space Station Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recovery System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range above ambient to support future utilization. Initially, the hydrogen will be vented overboard to space vacuum. This paper describes the OGA integration into the ISS Node 3.
X