Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Aerodynamic Characteristics Study and Possible Improvements of MAAT Feeder Airships

2013-09-17
2013-01-2112
This paper is dedicated to the study and improvement of the aerodynamic properties of the feeder airship in the context of MAAT project. FP7 MAAT project is based on the concept of two different types of airships (the cruiser and the feeder) working together as a transportation system. The current feeder concept includes unconventional shape changing envelope. Two problems are considered in this paper. The first problem is to find a condition of the effective vertical ascent for the feeder (from the ground to the altitude of the cruiser). A series of CFD simulations were carried out for the top flow for a range of altitudes from 0 to 16 km and velocities between 2 and 10 m/s. The results confirm the appearance of some negative effects, including high drag during the vertical ascent, especially, at low altitudes. The second problem is to study and reduce the side wind effects on the ascending feeder airship.
Technical Paper

Numerical Simulation of Helicopter Blade Ice Shedding using a Bilinear Cohesive Zone Model

2015-06-15
2015-01-2121
In helicopter, the icing rotor blades will decrease the effectiveness of the helicopter and endanger the lives of the pilots. The asymmetrical ice break-up and shedding could also lead to severe vibrations of the rotor blade. Ice break-up from the main rotor may strike the fuselage and tail rotor, even worse, find its way into the engine, which may cause serious aircraft accidents. An understanding of the mechanisms responsible for ice shedding process is necessary in order to optimize the helicopter rotor blade design and de-icing system to avoid hazardous ice shedding. In this paper, the ice shedding model is improved by introducing a bilinear cohesive zone model (CZM) to simulate the initiation and propagation of ice/blade interface crack. A maximum stress criterion is used to describe the failure occurred in the ice.
X