Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

Analysis on Yield Tightening of Threaded Fasteners

2008-04-14
2008-01-0545
In this paper, an emphasis is put on describing the elastic and plastic deformation behavior of the bolted joint. The bolt material is assumed to be plastic hardening. A nonlinear combined stress model is established for a typical bolted joint for the purpose of studying its behavior under a yield tightening. The combined effect of axial and torsional stresses in the tightened threaded fastener is considered. A new approach for yield tightening under ideal plastic bolt was proposed, and the effects of the thread and bearing frictional coefficients on the clamp load prediction are evaluated. The prediction precision of deformation behavior of the bolted joint under yield tightening for the strain hardening bolt material are studied experimentally.
Journal Article

Research on Measurement Method of Road Gradient and Altitude by On-Road Driving

2009-04-20
2009-01-1116
Exhaust emissions from a vehicle under road driving condition is affected by the control state of ECU (Engine Control Unit). This control state highly depends on the driving force of the vehicle. The driving force is nearly equal to the driving resistance, which is the sum of the acceleration resistance, the air resistance, the rolling resistance and the gradient resistance. Although it is essential to take an accurate measurement of the road gradient, it is quite difficult to evaluate the gradient resistance in testing on-road driving. In this study, the measurement methods of the road gradient and the altitude with GPS, gyro sensor and height sensor are reported. The road gradient under the on-road driving condition is evaluated by the combination of measuring the pitch angle with the gyro sensor and measuring the vehicle gradient with the two height sensors. Verifying of this method, the altitude of the driving test route is also evaluated.
Technical Paper

Macro Element Fast Crash Analysis of 3D Space Frame

2007-04-16
2007-01-0894
The paper discusses recent developments in the macro element methodology. Newly developed macro elements: tapered super beam, thin-walled super joint, and deformable barrier allow for simulation of the crash response of space frames in arbitrary crash configurations. The paper discusses underlying modeling concept and calculation methodology used in the development of new macro elements and demonstrates its effectiveness in the calculation/design process. A number of crash simulation examples are given which illustrates the accuracy of the macro element method in comparison to time consuming FE calculations.
Technical Paper

Inspection of Debonds in Adhesive Joints and Loosened Mechanical Fasteners Using Shearography with Multiple Frequency Vibrational Excitation

2007-04-16
2007-01-1213
To reduce costs and facilitate automation of joining processes, adhesive bonding has gained popularity as a replacement for conventional mechanical fastener, especially for bonding parts made of plastics and polymer composites. However, the adhesive bonding process is more susceptible to quality variations during manufacturing than traditional joining and fastening methods. Shearography, an optical technique that measures full-field surface deformation, has been extended to inspecting debonds. It detects a debond by measuring the debond's response to applied stresses. This paper describes a technique of shearography using multiple frequency vibration excitation as a means of stressing for detecting debonds with closed boundaries as well as open boundaries. The technique can also be used to detect loosened mechanical fasteners. This process can be fully automated for rapid inspection on factory floors.
Technical Paper

Object Detection and Tracking using an Optical Time-of-Flight Range Camera Module for Vehicle Safety and Driver Assist Applications

2007-04-16
2007-01-1104
This paper describes a high frame rate focal-plane-array range camera module, based on optical time-of-flight measurement, along with machine vision algorithms that take advantage of the real-time 3D information. The utility of such technology is demonstrated in an advanced backup safety system. This system detects obstacles lying on the ground as well as tracks moving objects. Using dual detection criteria, the system outperforms existing backup proximity sensors. Based on 3D imagery collected from a rear-viewing camera configuration, we evaluate the detection and tracking accuracy for varying object sizes and ranges. Operational experience shows that our time-of-flight range camera can be a cost-effective and reliable component of intelligent automotive safety and driver assist systems.
Technical Paper

Investigation of the Effect of Adhesive Coating on the Performance of Threaded Fasteners

2007-04-16
2007-01-1671
This study investigates the effect of Teflon and adhesive coatings on the torque-tension relationship and the self-loosening performance of threaded fasteners. Two Teflon insulation coatings and one locking adhesive are considered. The torque-tension relationship is established for coated and uncoated fasteners for both tightening and loosening. Finally, the fasteners are tested to determine their self-loosening performance under cyclic transverse loads. A computer controlled fastener tightening system is used to establish the torque-tension relationship during tightening. The coefficients of thread and bearing friction, and the overall nut factor are measured. The breakaway loosening torque of tightened bolts, along with the coefficients of thread and underhead friction and nut factor are investigated. A modified Junker machine is used to evaluate the self-loosening performance of fasteners with various coatings.
Technical Paper

DOE Investigation on the Effect of Dimensional Thread Tolerance on the Vibration-Induced Loosening of Fasteners

2007-04-16
2007-01-1663
This study investigates the effect of the fasteners threads dimensional variation within the conformance tolerance limits on the self-loosening of threaded fasteners that are subjected to cyclic transverse service loads. A test setup is developed in order to simulate cyclic transverse service loads, and monitor the fastener clamp load loss and rotation in real-time during the test. The tested fasteners are used in one of the critical safety joints in a DaimlerChrysler vehicle. The tested thread dimensional parameters are the major diameter, the minor diameter, the pitch diameter, thread pitch, and thread profile angle. These parameters are measured optically. A set of conforming fasteners are selected and tested for self loosening. The self-loosening results are used to construct a model that fits the data points that are obtained experimentally. After that, the developed model is used to estimate the effect of each factor and its interaction with other factors on the self-loosening.
Technical Paper

State Space Formulation by Bond Graph Models for Vehicle System Dynamics

2008-04-14
2008-01-0430
Modeling and simulation of dynamic systems is not always a simple task. In this paper, the mathematical model of a 4 Degree Of Freedom (DOF) ride model is presented using a bond-graph technique with state energy variables. We believe that for the physical model as described in this research, the use of a bond-graph approach is the only feasible solution. Any attempt to use classical methods such as Lagrange equations or Newton's second law, will create tremendous difficulties in the transformation of a set of second order linear differential equations to a set of first order differential equations without violating the existence and the uniqueness of the solution of the differential equations, the only approach is the elimination of the damping of the tires, which makes the model unrealistic. The bond-graph model is transformed to a mathematical model. Matlab is used for writing a computer script that solves the engineering problem.
Technical Paper

A State-Space Simplified SCR Catalyst Model for Real Time Applications

2008-04-14
2008-01-0616
The use of Selective Catalytic Reduction (SCR) is becoming increasingly more popular as a way of reducing NOx emissions from heavy duty vehicles while maintaining competitive operating costs. In order to make efficient use of these systems, it's important to have a complete system approach when it comes to calibration of the engine and aftertreatment system. This paper presents a simplified model of a heavy duty SCR catalyst, primarily intended for use in combination with an engine-out emissions model to perform model based offline optimization of the complete system. The traditional way of modelling catalysts using a dense discretization of the catalyst channels and non-linear differential equation solvers to solve the heat and mass balance equations, requires too much computational power in this application. The presented model is also useful in other applications such as model based control.
Technical Paper

A CFD Investigation on the Nozzle of Orifices Distributing in Different Space Layers

2008-04-14
2008-01-0948
A series calculation methodology from the injector nozzle internal flow to the fuel spray was applied to investigate the internal flow and spray of a nozzle whose orifices distributed in different space layers. The nozzle internal flow calculation using an Eulerian three-fluid model and a cavitation model was performed. The needle valve movement during the injection period was taken into account in this calculation. The transient data of spatial distributions of velocity, turbulent kinetic energy, dissipation rate, void fraction rate, etc. at the nozzle exit were extracted. These output data were transferred to the spray calculation, in which a primary break-up model was applied to the Discrete Droplet Model (DDM). The calculation results were compared with the results of the measurement data of spray. Predicted spray morphology and penetration showed good agreement with the experiental data.
Technical Paper

Estimation of the Free Space in Front of a Moving Vehicle

2009-04-20
2009-01-1288
There are more and more systems emerging making use of measurements from a forward looking radar and a forward looking camera. It is by now well known how to exploit this data in order to compute estimates of the road geometry, tracking leading vehicles, etc. However, there is valuable information present in the radar concerning stationary objects, that is typically not used. The present work shows how radar measurements of stationary objects can be used to obtain a reliable estimate of the free space in front of a moving vehicle. The approach has been evaluated on real data from highways and rural roads in Sweden.
Technical Paper

Cost and Weight Optimization of Magnesium Power Train Components by Using Aluminum Thread Forming Fastener Technology

2009-04-20
2009-01-1256
The current state of technology for fastening magnesium power train components is the use of metric steel or aluminum bolts. Due to physical and chemical properties of the used materials, difficulties like high clamping load loss at elevated temperatures and strong corrosive attack which requires costly corrosion protection systems must be taken into account. The objective of this project was to develop and to evaluate a high-strength thread forming aluminum bolt for magnesium components regarding mechanical properties, relaxation and corrosion behavior. Benefits of this bolt connection system are weight reduction in comparison to steel bolts, lower loss of clamping load, less contact corrosion and cost reduction by using thread forming technology (elimination of drilling and thread cutting operations).
Technical Paper

Wear Resistance of Lunar Wheel Treads Made of Polymeric Fabrics

2009-04-20
2009-01-0065
The purpose of this research is to characterize the wear resistance of wheel treads made of polymeric woven and non-woven fabrics. Experimental research is used to characterize two wear mechanisms: (1) external wear due to large sliding between the tread and rocks, and (2) external wear due to small sliding between the tread and abrasive sand. Experimental setups include an abrasion tester and a small-scale merry-go-round where the tread is attached to a deformable rolling wheel. The wear resistance is characterized using various measures including, quantitatively, by the number of cycles to failure, and qualitatively, by micro-visual inspection of the fibers’ surface. This paper describes the issues related to each experiment and discusses the results obtained with different polymeric materials, fabric densities and sizes. The predominant wear mechanism is identified and should then be used as one of the criteria for further design of the tread.
Technical Paper

Utilization of Response Surface Methodologies in the Multi-Discipline Design Optimization of an Aircraft Wing

2009-04-20
2009-01-0344
A multi-disciplinary optimization analysis is a highly iterative process that requires a large number of function evaluations for computing the objective functions and the constraints. Metamodels (i.e. response surface methodologies) can be constructed before starting the optimization for each one of the objective functions and the constraint functions. The metamodels can be employed in the multi-discipline optimization instead of high fidelity simulations resulting in significant computational savings. A multi-discipline design optimization of an aircraft wing under aerodynamic and structural analysis considerations is performed in this manner. Design variables associated with the shape of the wing are considered in the CFD simulations, while sizing structural design variables are considered in the structural discipline. At the top system level, a cost type metric is defined for driving the overall design optimization process.
Technical Paper

Application of Virtual SEA for the Prediction of Acoustic Performance of Cockpit

2009-04-20
2009-01-0767
Not only for the carmakers but also for the automotive parts suppliers, cost reduction and short development cycle are strongly required to survive in highly competitive market. The simulation models predicting acoustic performance of cockpit module at early design stage could be a part of time-saving and cost-effective solution for those demands. Via experimental, analytical, and virtual statistical energy analysis (SEA) approach, the simulation models of cockpit module predicting acoustic performance are developed and validated. Recently proposed virtual SEA using FE models from crash analysis are useful to reduce the ambiguity of SEA modeling which could make a big difference in the result. The SEA models simulate the transmission loss tests of a cockpit module attached with several kinds of acoustical treatments between two connected reverberation chambers.
Technical Paper

Effect of Threaded Fastener Condition on Low Cycle Fatigue Failures in Metric Bolts Under Transverse Loading

2008-04-14
2008-01-0700
This paper presents an experimental investigation of the effect of threaded fastener condition on the low cycle fatigue behavior of a tightened metric fastener under a fully reversed, cyclic transverse load. The test set-up subjects tightened, threaded fasteners to the combined effect of axial, torsional, bending, and transverse shear loading. The two conditions of the fasteners were “as received” and “ultrasonically cleaned and oiled”. Fatigue performance at three different bolt tension levels was investigated. Based on preliminary testing arbitrarily selected amplitude of 0.05 inches was used for the cyclic transverse displacement, at a frequency of 10 Hz. A Scanning Electron Microscope (SEM) was used to assess the failure mode on a bolt fracture surface. The bolt stresses are sensitive to both thread and under head friction characteristics.
X