Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development and Qualitative Testing of Traction Concepts as an Undergraduate Experience

2010-04-12
2010-01-0312
Recent research at Clemson University has focused on the development of an advanced non-pneumatic, non-elastomeric lunar wheel for NASA with superior traction. This paper reports on several concepts for tread materials and geometries that have been explored for tire-on-sand use. Specifically, fourteen concepts, involving the use of metal meshes, textile carpet materials, soft grousers, foams, and screens, were physically tested in an on-vehicle environment. Prototypes for each concept and formal test procedures to quantify traction were developed. This paper presents the results of the tests for several different concepts and the comparison between the concepts that were developed. Students developed their own testing environment through which these test procedures are implemented, an inclined hill 45 ft. in length and 8 ft. wide will approximately 6 inches deep filled with sand.
Technical Paper

Simulation and Evaluation of Semi-Active Suspensions

1994-03-01
940864
A simulation of the vertical response of a nonlinear 1/4 car model consisting of a sprung and an unsprung mass was developed. It is being used for preliminary evaluation of various suspension configurations and control algorithms. Nonlinearities include hysteretic shock damping and switchable damping characteristics. Road inputs include discrete events such as bumps and potholes as well as randomly irregular roads having specified power spectral densities (PSDs). Fast Fourier transform data analysis procedures are used to process data from the simulation to obtain PSDs, rms values, and histograms of various response quantities. To aid in assessing ride comfort, the 1/3 octave band rms acceleration of the sprung mass is calculated and compared with specifications suggested by the International Standards Organization (ISO). Cross plots of the rms values of acceleration, suspension travel, and the force of the road on the tire are used to compare the performance of various suspensions.
Journal Article

A Fuzzy Inference System for Understeer/Oversteer Detection Towards Model-Free Stability Control

2016-04-05
2016-01-1630
In this paper, a soft computing approach to a model-free vehicle stability control (VSC) algorithm is presented. The objective is to create a fuzzy inference system (FIS) that is robust enough to operate in a multitude of vehicle conditions (load, tire wear, alignment), and road conditions while at the same time providing optimal vehicle stability by detecting and minimizing loss of traction. In this approach, an adaptive neuro-fuzzy inference system (ANFIS) is generated using previously collected data to train and optimize the performance of the fuzzy logic VSC algorithm. This paper outlines the FIS detection algorithm and its benefits over a model-based approach. The performance of the FIS-based VSC is evaluated via a co-simulation of MATLAB/Simulink and CarSim model of the vehicle under various road and load conditions. The results showed that the proposed algorithm is capable of accurately indicating unstable vehicle behavior for two different types of vehicles (SUV and Sedan).
X