Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

Body Induced Boom Noise Control by Hybrid Integrated Approach for a Passenger Car

2013-05-13
2013-01-1920
Vehicle incab booming perception, a low frequency response of the structure to the various excitations presents a challenging task for the NVH engineers. The excitation to the structure causing boom can either be power train induced, depending upon the number of cylinders or the road inputs, while transfer paths for the excitation is mainly through the power train mounts or the suspension attachments to the body. The body responds to those input excitations by virtue of the dynamic behavior mainly governed by its modal characteristics. This paper explains in detail an integrated approach, of both experimental and numerical techniques devised to investigate the mechanism for boom noise generation. It is therefore important, to understand the modal behavior of the structure. The modal characteristics from the structural modal test enable to locate the natural frequencies and mode shapes of the body, which are likely to get excited due to the operating excitations.
Technical Paper

Suspension Testing using Wheel Forces on a 3 DOF Road Load Simulator

2008-04-14
2008-01-0223
The use of Wheel Force Transducers (WFTs) to acquire data for laboratory simulation is becoming standard industry practice. However, in test rigs where we have only the suspension module and not the complete vehicle, does the reproduction of the orthogonal forces and moments at the wheel centre guarantee an accurate replication of the fatigue damage in the suspension components? The objective of this paper is to review the simulation methodology for a highly non-linear suspension in a 3 DOF (degree-of-freedom) suspension test rig in which the simulation was carried out using only the three orthogonal loads and vertical displacement. The damage at critical locations in the suspension is compared with that on the road and an assessment of the simulation using the WFT is made based on a comparison of the damage on the road vs. the rig.
Technical Paper

Development of Accelerated Life Test Schedule for Rig Testing of Live Axles Based on Road Load Data and Its Correlation with Field

2018-04-03
2018-01-0099
Drive components of live axle undergoes different loading conditions during field usage depending upon terrain conditions, vehicle loading and traffic conditions etc. During vehicle running, drive components of axle experiences variable torque levels, which results in the fatigue damage of the components. Testing of these drive components of axle on test rig for endurance life is an imperative part of axle development, owing to limitations of vehicle testing because of time and cost involved. Similarly, correlating field failures with rig testing is equally critical. In such situation, if a test cycle is derived correlating the field usage, rig testing can be effectively used for accelerated life testing and reliability prediction of these components. An approach is presented in the paper wherein test cycle is derived based on the data collected on vehicle in the field under service road and loading conditions.
Technical Paper

A Novel Approach for Diagnostics, End of Line and System Performance Checks for Micro Hybrid Battery Management Systems

2014-04-01
2014-01-0291
Micro Hybrid Systems are a premier approach for improving fuel efficiency and reducing emissions, by improving the efficiency of electrical energy generation, storage, distribution and consumption, yet with lower costs associated with development and implementation. However, significant efforts are required while implementing micro hybrid systems, arising out of components like Intelligent Battery Sensor (IBS). IBS provides battery measurements and battery status, and in addition mission critical diagnostic data on a communication line to micro hybrid controller. However, this set of data from IBS is not available instantly after its initialization, as it enters into a lengthy learning phase, where it learns the battery parameters, before it gives the required data on the communication line. This learning period spans from 3 to 8 hours, until the IBS is fully functional and is capable of supporting the system functionalities.
Technical Paper

Derivation of Test Schedule for Clutch Using Road Load Data Analysis and Energy Dissipation as Basis

2018-04-03
2018-01-0404
During every clutch engagement energy is dissipated in clutch assembly because of relative slippage of clutch disc w.r.t. flywheel and pressure plate. Energy dissipated in clutch is governed by many design parameters like driveline configuration of the vehicle vis-a-vis vehicle mass, and operational parameters like road conditions, traffic conditions. Clutch burning failure, which is the major failure mode of clutch assembly, is governed by energy dissipation phenomenon during clutch engagement. Clutch undergoes different duty cycles during usage in city traffic, highways or hilly regions during its lifetime. A test schedule was derived using energy dissipated during every clutch engagement event as a base and using road load data collected on the vehicle. Road load data was collected in different road mix conditions comprised of city traffic, highway, hilly region, rough road for few hundred kilometers.
Technical Paper

Ultra-Capacitor based Hybrid Energy Storage and Energy Management for Mild Hybrid Vehicles

2014-04-01
2014-01-1882
In a Mild hybrid electric vehicle, a battery serves as a continuous source of energy but is inefficient in supplying peak power demands required during torque assists for short duration. Moreover, the random charging and discharging that result due to varying drive cycle of the vehicle affects the life of the battery. In this paper, an Ultra-capacitor based hybrid energy storage system (HESS) has been developed for mild hybrid vehicle which aims at utilizing the advantages of ultracapacitors by combining them with lead-acid batteries, to improve the overall performance of the battery, and to increase their useful life. Active current-sharing is achieved by interfacing ultracapacitor to the battery through a bi-directional boost dc-dc converter.
Technical Paper

Augmenting Light Weighting Horizon in Automotive

2014-04-28
2014-28-0023
Better ride and comfort, enhanced safety, reliability and durability, lower running cost as well as cost of ownership continue to be challenges for automotive OEMs. Higher fuel efficiency is considered as USP not only for lower running cost but also is hygiene factor from sustainability point of view. This has necessitated the need for Augmenting Light weighting horizon in automotive OEMs. Augmenting this leads to invention of innovative materials and processes for emerging cost competitive market. This paper focuses on technology efforts towards augmenting light weighting Horizon in Automotive. Light weighting concepts being explored by OEMs with the help of automotive component manufacturers from Powertrain - Engines & Transmission, Chassis and Suspension are discussed.
Technical Paper

Evaluation of Cabin Comfort in Air Conditioned Buses Using CFD

2014-04-01
2014-01-0699
The objective of the work presented in this paper is to provide an overall CFD evaluation and optimization study of cabin climate control of air-conditioned (AC) city buses. Providing passengers with a comfortable experience is one of the focal point of any bus manufacturer. However, detailed evaluation through testing alone is difficult and not possible during vehicle development. With increasing travel needs and continuous focus on improving passenger experience, CFD supplemented by testing plays an important role in assessing the cabin comfort. The focus of the study is to evaluate the effect of size, shape and number of free-flow and overhead vents on flow distribution inside the cabin. Numerical simulations were carried out using a commercially available CFD code, Fluent®. Realizable k - ε RANS turbulence model was used to model turbulence. Airflow results from numerical simulation were compared with the testing results to evaluate the reliability.
Technical Paper

Virtual Road Torque Data Collection

2019-01-09
2019-26-0289
The traditional method of collecting the Road Torque Data of a vehicle is by instrumenting and running the vehicle on different road terrains. Every time, physical testing becomes tedious & most challenging task due to unavailability of unit under tests, kind of resource required and so on. However, in view of response to the fast emerging technology & limit less competition, it has become mandatory to develop & launch products in market within no time. In recent times, there is increased demand for physical road torque data measurements for a vehicle program based on its application and different powertrain configurations, which clearly shows that unless we front load the data to design it is practically impossible to meet the deadlines. Each of these measurements cost and consumes valuable resources of the company in collecting and analyzing the data.
Technical Paper

Battery Lifetime & Capacity Fade Prediction for Electric Vehicles Using Coupled Electro-Thermal Simulation Methodology

2023-09-14
2023-28-0003
Global concerns over availability and environmental impact of conventional fuels in recent years have resulted in evolution of Electric Vehicles. Research and development focus has shifted towards one of its main components, Lithium-ion battery. Development of high performing, long lasting batteries within challenging timelines is the need of the industry. Lithium-ion batteries undergo “battery ageing”, limiting its energy storage and power output, affecting the EV performance, cost & life span. It is critical to be able to predict the rate of battery ageing & the impact of different environmental conditions on battery lifetime/capacity. Conventionally, extensive physical vehicle level testing is carried out on batteries to map the battery capacity in various conditions. This is a lengthy & expensive process affecting the product development cycle, paving the way for an alternative process.
Technical Paper

Development of Hydrogen Fuel Cell Bus Technology for Urban Transport in India

2019-01-09
2019-26-0092
Polymer Electrolyte Membrane Fuel Cell (PEMFC) technology is considered for automotive applications due to rapid start up, energy efficiency, high power density and less maintenance. In line with National Hydrogen Energy Roadmap of Govt. of India that aims to develop and demonstrate hydrogen powered IC engine and fuel cell based vehicle. TATA Motors Ltd. has designed, developed and successfully demonstrated “Low Floor Hydrogen Fuel Cell Bus” which comprises of integrated fuel cell power system, hydrogen storage and dispensing system. The fuel cell power system, converts the stored chemical energy in the hydrogen to DC electrical energy. The power generated is regulated and used for powering the traction motor. The development of fuel cell bus consists of five stages: Powertrain sizing as per vehicle performance targets, fuel cell stack selection and balance of plant design and development, bus integration, hydrogen refueling infrastructure creation and testing of fuel cell bus.
Technical Paper

Development of an Efficient Vehicle Energy Management System for Fuel Cell Electric Vehicles

2024-01-16
2024-26-0173
Fuel cell electric vehicles generally have two power sources – the fuel cell power system and a high voltage battery pack - to power the vehicle operations. The fuel cell power system is the main source of power for the vehicle and its operations are supported by the battery pack. The battery pack helps to tackle the dynamic power demands from the vehicle such as during acceleration, to which the response of the fuel cell might be slower. The battery is also used to recover the energy from regeneration during braking and can also be used to extend the range of the vehicle in case the storage tanks runs out of hydrogen. In order to maximize the fuel efficiency of the fuel cell power system it is critical that these two power sources are used in conjunction with each other in an optimal manner.
Technical Paper

Cyber Threats and Its Mitigation to Intelligent Transportation System

2024-01-16
2024-26-0184
With the revolutionary advancements in modern transportation, offering advanced connectivity, automation, and data-driven decision-making has put the intelligent transportation systems (ITS) to a high risk from being exposed to cyber threats. Development of modern transportation infrastructure, connected vehicle technology and its dependency over the cloud with an aim to enhance safety, efficiency, reliability and sustainability of ITS comes with a lot more opportunities to protect the system from black hats. This paper explores the landscape of cyber threats targeting ITS, focusing on their potential impacts, vulnerabilities, and mitigation strategies. The cyber-attacks in ITS are not just limited to Unauthorized Access, Malware and Ransomware Attacks, Data Breaches, Denial of Service but also to Physical Infrastructure Attacks.
Technical Paper

A Comparative Analysis and Novel Powertrain Topology for FCEVs, Integrating Ultra-Capacitor and Batteries

2024-01-16
2024-26-0168
This paper addresses challenges in current Fuel Cell Stack Buses and presents a novel Fuel Cell Electric Vehicle Bus (FCEV-Bus) powertrain that combines fuel cells, ultra-capacitors, and batteries to enhance performance and reliability. Existing Fuel Cell Stack Buses struggle with responsiveness, power fluctuations, and cost-efficiency. The FCEV-Bus powertrain uses a Fuel Cell stack as the primary power source, ultra-capacitors for quick power response, and batteries for addressing power variations. Batteries also save costs in certain cases. This combination optimizes power management, improves system efficiency, and extends the FCEV-Bus's operational life. In conclusion, this paper offers an innovative solution to overcome traditional fuel cell system limitations, making FCEV-Buses more efficient and reliable for potential wider adoption.
Technical Paper

Utilizing Computed Tomography for Cell Characterization, Quality Assessment, and Failure Analysis

2024-01-16
2024-26-0189
Computed Tomography (CT) has become a potent instrument for non-invasive assessment of battery cell integrity, providing detailed insights into their internal structure. The present study explores the capabilities and advantages of employing CT for cell characterization through a systematic evaluation from various parameters. The evaluation results will be based on real-world experiments conducted on a standard battery cell, assessing the CT system’s ability to provide precise internal measurements, detect defects, and ensure the overall integrity of the cell. We outline a comprehensive framework that includes criteria such as system specifications, image quality, software capabilities, maintenance, service, and cost-effectiveness.
Technical Paper

A Study on Effect of Regenerative Braking on Vehicle Range and Axle Life

2024-01-16
2024-26-0240
This paper aims at analysing the effect of regeneration braking on the amount of energy harnessed during vehicle braking, coasting and its effect on the drive train components like gear, crown wheel pinion, spider gear & bearing etc. Regenerative braking systems (RBS) is an effective method of recovering the kinetic energy of the vehicle during braking condition and using this to recharge the batteries. In Battery Electric Vehicles (BEV), this harnessed energy is used for controlled charging of the high voltage batteries which will help in increasing the vehicle range eventually. Depending on the type of the powertrain architecture, components between motor output to the wheels will vary, i.e., in an e-axle, motor is coupled with a gear box which will be connected with differential and the wheels. Whereas in case of a central drive architecture, motor is coupled with gearbox which is connected with a propeller shaft and then the differential and to the wheels.
Technical Paper

Test Bench Phase Shift-ICE to EV

2024-01-16
2024-26-0368
Since last decade automotive Industry is witnessing transition from ICE to EV due to stringent environmental laws by government bodies and technological breakthrough. EV technology is emerging day by day. Biggest challenge in front of OEM is the phase shift from ICE to EV. OEM need to decide on glide path for test rig development for this change to support ICE & EV powertrain validation to deliver reliable product to their customers. In EV development, major focus is on investment for battery development. Hence, for the Motor and Gearbox validation balanced approach is to upgrade existing ICE test bench for the EV with minimum effort and cost. This paper provides details on need and approach required to make the ICE test bench capable for EV powertrain validation. Proposed methodology helps to support both type of powertrain and have maximum utilization of the test bench.
X