Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Analysis of Cycle-to-Cycle Variations of the Mixing Process in a Direct Injection Spark Ignition Engine Using Scale-Resolving Simulations

2016-11-16
2016-01-9048
Since the mechanisms leading to cyclic combustion variabilities in direct injection gasoline engines are still poorly understood, advanced computational studies are necessary to be able to predict, analyze and optimize the complete engine process from aerodynamics to mixing, ignition, combustion and heat transfer. In this work the Scale-Adaptive Simulation (SAS) turbulence model is used in combination with a parameterized lagrangian spray model for the purpose of predicting transient in-cylinder cold flow, injection and mixture formation in a gasoline engine. An existing CFD model based on FLUENT v15.0 [1] has been extended with a spray description using the FLUENT Discrete Phase Model (DPM). This article will first discuss the validation of the in-cylinder cold flow model using experimental data measured within an optically accessible engine by High Speed Particle Image Velocimetry (HS-PIV).
Journal Article

In-Cylinder LIF Imaging, IR-Absorption Point Measurements, and a CFD Simulation to Evaluate Mixture Formation in a CNG-Fueled Engine

2018-04-03
2018-01-0633
Two optical techniques were developed and combined with a CFD simulation to obtain spatio-temporally resolved information on air/fuel mixing in the cylinder of a methane-fueled, fired, optically accessible engine. Laser-induced fluorescence (LIF) of anisole (methoxybenzene), vaporized in trace amounts into the gaseous fuel upstream of the injector, was captured by a two-camera system, providing one instantaneous image of the air/fuel ratio per cycle. Broadband infrared (IR) absorption by the methane fuel itself was measured in a small probe volume via a spark-plug integrated sensor, yielding time-resolved quasi-point information at kHz-rates. The simulation was based on the Reynolds-averaged Navier-Stokes (RANS) approach with the two-equation k-epsilon turbulence model in a finite volume discretization scheme and included the port-fuel injection event. Commercial CFD software was used to perform engine simulations close to the experimental conditions.
Technical Paper

Active Noise Cancellation at Powertrain Oil Pan

2007-05-15
2007-01-2422
Under city driving conditions, the powertrain represents one of the major vehicle exterior noise sources. Especially at idle and during full load acceleration, the oil pan contributes significantly to the overall powertrain sound emission. The engine oilpan can be a significant contributor to the powertrain radiated sound levels. Passive optimization measures, such as structural optimization and acoustic shielding, can be limited by e.g. light-weight design, package and thermal constraints. Therefore, the potential of the Active Structure Acoustic Control (ASAC) method for noise reduction was investigated within the EU-sponsored project InMAR. The method has proven to have significant noise reduction potential with respect to oil pan vibration induced noise. The paper reports on activities within the InMAR project with regard to a passenger car oil pan application of an ASAC system based on piezo-ceramic foil technology.
Technical Paper

Experimental and Numerical Simulation of the Flow Around the Brake Disk of a Scaled-Down VW Phaeton Model

2007-10-07
2007-01-3949
In this paper, the experimental and numerical simulation of the flow field in the simplified front wheel arch of a scaled-down VW Phaeton half-model (scale 1:2,5) is presented. For wind tunnel experiments a realistic, rotating wheel model with plexiglass treads (PMMA) was designed. The construction allowed for detailed measurements of the flow field directly at the brake disk by means of the stereoscopic Particle Image Velocimetry (PIV) technique. The formation of the flow structures and the resulting three-dimensional boundary layers on the brake disk are analyzed. Furthermore, the oncoming air flow towards the brake disk and the flow field near the wheel rim openings were investigated. The experimental data is compared with results of Computational Fluid Dynamics (CFD) simulations using the Lattice-Boltzmann based solver Powerflow. The validation shows the potential and the limitations of the numerical approach and indicates areas of further improvement.
Technical Paper

The New Diesel Engine in the New Beetle

1998-08-11
981950
With the introduction of the New Beetle, Volkswagen is offering the next generation of the 1.9l TDI engine. Several evolutionary changes have been made to the TDI concept to further improve its emissions, efficiency and performance. Emissions performance is improved with increased fuel injection pressure, optimized fuel injectors, calibration modifications, EGR cooling and reduced crevice volume in the combustion chamber. Efficiency is improved with new oil pump, vacuum pump and water pump drive systems and the elimination of an auxiliary driveshaft. Performance and efficiency is improved with the addition of a variable geometry turbocharger, which increases torque at lower engine speeds while preserving performance at higher engine speeds. This paper describes the many enhancements found in this latest generation TDI and gives a brief lookout to the future trends in diesel engine development such as a high pressure injection system with unit injectors.
Technical Paper

A PDF-Based Model for Full Cycle Simulation of Direct Injected Engines

2008-06-23
2008-01-1606
In one-dimensional engine simulation programs the simulation of engine performance is mostly done by parameter fitting in order to match simulations with experimental data. The extensive fitting procedure is especially needed for emissions formation - CO, HC, NO, soot - simulations. An alternative to this approach is, to calculate the emissions based on detailed kinetic models. This however demands that the in-cylinder combustion-flow interaction can be modeled accurately, and that the CPU time needed for the model is still acceptable. PDF based stochastic reactor models offer one possible solution. They usually introduce only one (time dependent) parameter - the mixing time - to model the influence of flow on the chemistry. They offer the prediction of the heat release, together with all emission formation, if the optimum mixing time is given.
Technical Paper

Comparison of Different EGR Solutions

2008-04-14
2008-01-0206
This paper compares 4 different EGR systems by means of simulation in GT-Power. The demands of optimum massive EGR and fresh air rates were based on experimental results. The experimental data were used to calibrate the model and ROHR, in particular. The main aim was to investigate the influence of pumping work on engine and vehicle fuel consumption (thus CO2 production) in different EGR layouts using optimum VG turbine control. These EGR systems differ in the source of pressure drop between the exhaust and intake pipes. Firstly, the engine settings were optimized under steady operation - BSFC was minimized while taking into account both the required EGR rate and fresh air mass flow. Secondly, transient simulations (NEDC cycle) were carried out - a full engine model was used to obtain detailed information on important parameters. The study shows the necessity to use natural pressure differences or renewable pressure losses if reasonable fuel consumption is to be achieved.
Technical Paper

Study cases using the method of Statistical Energy Analyse SEA for airborne sound transmission in a vehicle body

2008-03-30
2008-36-0567
The acoustics insulation on the car body is ones of the more important target in the NVH (Noise Vibration and Harshness) vehicle development process. The method of SEA is a validated statistical approach to solve airborne noise transmission problems. In the vehicle analysis above 300 Hz where material trim and leakage paths makes a important contribution in the vehicle interior acoustics shows the methodology its advantages over deterministic methods.
Technical Paper

Application of Detached-Eddy Simulation for Automotive Aerodynamics Development

2009-04-20
2009-01-0333
This paper presents a complete methodology for performing finite-volume-based detached-eddy simulation for the prediction of aerodynamic forces and detailed flow structures of passenger vehicles developed using the open-source CFD toolbox OpenFOAM®. The main components of the methodology consist of an automatic mesh generator, a setup and initialisation utility, a DES flow solver and analysis and post-processing routines. Validation of the predictions is done on the basis of detailed comparisons to experimental wind-tunnel data. Results for lift and drag are found to compare favourably to the experiments, with some moderate discrepancies in predicted rear lift. Point surface-pressure measurements, oil-streak images and maps of total pressure in the flow field demonstrate the approach's capabilities to predict the fine detail of complex flow regimes found in automotive aerodynamics.
Technical Paper

Springback Elimination in Structural Components by Means of Electromagnetic Forming

2009-04-20
2009-01-0803
Looking for car weight reduction related to the use of High Strength Steels (HSS) for manufacturing body-in-white components, an innovative application of the high velocity forming techniques has been developed: the Electro Magnetic (EM) calibration and elimination of the spring-back effect (sidewall curl) of High Strength Steel U-channels. Within this paper the initial tests on L and U-shaped parts will be presented. Being the mechanical stiffness the main parameter for improving the coil endurance, the prediction of the coil strains under EM forces is a basic issue, which has been addressed within this study.
Technical Paper

The Response of a Closed Loop Controlled Diesel Engine on Fuel Variation

2008-10-06
2008-01-2471
An investigation was conducted to elucidate, how the latest turbocharged, direct injection Volkswagen diesel engine generation with cylinder pressure based closed loop control, to be launched in the US in 2008, reacts to fuel variability. A de-correlated fuels matrix was designed to bracket the range of US market fuel properties, which allowed a clear correlation of individual fuel properties with engine response. The test program consisting of steady state operating points showed that cylinder pressure based closed loop control successfully levels out the influence of fuel ignition quality, showing the effectiveness of this new technology for markets with a wide range of fuel qualities. However, it also showed that within the cetane range tested (39 to 55), despite the constant combustion mid-point, cetane number still has an influence on particulate and gaseous emissions. Volatility and energy density also influence the engine's behavior, but less strongly.
Technical Paper

Simulation Based Analysis of Test Results

2010-04-12
2010-01-1013
The use of a newly developed approach results in a highly accurate three dimensional analysis of the occupant movement. The central point of the new method is the calculation of precise body-trajectories by fitting standard sensor-measurements to video analysis data. With the new method the accuracy of the calculated trajectories is better than 5 to 10 millimeters. These body trajectories then form the basis for a new multi-body based numerical method, which allows the three dimensional reconstruction of the dummy kinematics. In addition, forces and moments acting on every single body are determined. In principle, the body movement is reconstructed by prescribing external forces and moments to every single body requiring that it follows the measured trajectory. The newly developed approach provides additional accurate information for the development engineers. For example the motion of dummy body parts not tracked by video analysis can be determined.
Technical Paper

New ways of fluid flow control in automobiles: Experience with exhaust gas aftertreatmetn control

2000-06-12
2000-05-0299
Flow control by fluidic devices - without moving parts - offers advantages of reliability and low cost. As an example of their automobile application based on authors'' long-time experience the paper describes a fluidic valve for switching exhaust gas flow in a NOx absorber into a by-pass during regeneration phase. The unique feature here is the fluidic valve being of monostable and of axisymmetric design, integrated into the absorber body. After development in aerodynamic laboratory, the final design was tested on engine test stand and finally in a car. This proved that the performance under high temperature and pulsation existing in exhaust systems is reliable and promising. Fluidic valves require, however, close matching with aerodynamic load. To optimize the exhaust system layout for the whole load-speed range and reaching minimum counter- pressure, both the components of exhaust system and control strategy have to be properly adopted.
Technical Paper

A Study of the Thermochemical Conditions in the Exhaust Manifold Using Secondary Air in a 2.0 L Engine

2002-05-06
2002-01-1676
The California LEV1 II program will be introduced in the year 2003 and requires a further reduction of the exhaust emissions of passenger cars. The cold start emissions represent the main part of the total emissions of the FTP2-Cycle. Cold start emissions can be efficiently reduced by injecting secondary air (SA) in the exhaust port making compliance with the most stringent standards possible. The thermochemical conditions (mixing rate and temperature of secondary air and exhaust gas, exhaust gas composition, etc) prevailing in the exhaust system are described in this paper. This provides knowledge of the conditions for auto ignition of the mixture within the exhaust manifold. The thus established exothermal reaction (exhaust gas post-combustion) results in a shorter time to light-off temperature of the catalyst. The mechanisms of this combustion are studied at different engine idle conditions.
Technical Paper

Effect of Cell Geometry on Emissions Performance of Ceramic Catalytic Converters

2002-03-04
2002-01-0354
More stringent emissions regulations, space limitations for catalytic converters in modern automotive applications, and new engine technologies constitute design challenges for today's engineers. In that context high cell density thinwall and ultrathinwall ceramic substrates have been designed into advanced catalytic converters. Whereas the majority of these substrates have a square cell geometry, a potential for further emissions improvement has been predicted for hexagonal cell structures. In order to verify these predictions, a ceramic substrate has been developed combining the features of high cell density, ultrathin cell walls, and hexagonal cell structure. Based on modeling data, the actual cell density and wall thickness of the hexagonal cell substrate will be defined. The performance of that substrate will be assessed by comparing experimental emissions results using two modern Volkswagen engines.
Technical Paper

Multi-Objective Adjoint Optimization of Intake Port Geometry

2012-04-16
2012-01-0905
Meeting the stringent efficiency demands of next generation direct injection engines requires not only optimization of the injection system and combustion chamber, but also an optimal in-cylinder swirling charge flow. This charge motion is largely determined by the shape of the intake port arm geometry and the valve position. In this paper, we outline an extensible methodology implemented in OPENFOAM® for multi-objective geometry optimization based on the continuous adjoint. The adjoint method has a large advantage over traditional optimization approaches in that its cost is not dependent upon the number of parameters being optimized. This characteristic can be used to treat every cell in the computational domain as a tunable parameter - effectively switching cells "on" or "off" depending on whether this action will help improve the objectives.
Technical Paper

Evaluation of Fast Detailed Kinetics Calibration Methodology for 3D CFD Simulations of Spray Combustion

2022-08-30
2022-01-1042
Meeting strict current and future emissions legislation necessitates development of computational tools capable of predicting the behaviour of combustion and emissions with an accuracy sufficient to make correct design decisions while keeping computational cost of the simulations amenable for large-scale design space exploration. While detailed kinetics modelling is increasingly seen as a necessity for accurate simulations, the computational cost can be often prohibitive, prompting interest in simplified approaches allowing fast simulation of reduced mechanisms at coarse grid resolutions appropriate for internal combustion engine simulations in design context. In this study we present a simplified Well-stirred Reactor (WSR) implementation coupled with 3D CFD Ricardo VECTIS solver.
Technical Paper

Analysis of Vehicle Power Supply Systems Using System Simulation

2006-04-03
2006-01-0299
Due to the introduction of new safety and comfort systems in modern automobiles, stability of the vehicle electrical system is increasingly important. The increasing number of electrical components demands that additional electrical energy be provided from robust, reliable supply sources in vehicles. When designing such systems, simulation is the development tool that is used to quickly obtain information regarding electrical system stability, battery charge level, and the distribution of power to the consumer systems. This paper describes how the Saber simulation environment from Synopsys Corporation helps develop increasingly demanding and complex vehicle power systems. A Volkswagen vehicle power net serves as an illustration.
Technical Paper

Combustion in a Swirl Chamber Diesel Engine Simulation by Computation of Fluid Dynamics

1995-02-01
950280
The combustion and pollutant formation processes in a 1.9 I IDI Diesel engine are simulated with the SPEED computational fluid dynamics (CFD) code. A part and a full load simulation of the production engine and a full load simulation of a modified engine design are analyzed. The mixing and combustion process is visualized for all cases by means of the isosurfaces of stoichiometric mixture. The correlation of this surface with global quantities as heat release, mean pressure and temperature and swirl ratio is emphasized. The global properties are presented resolved for the swirl, main chamber and the swirl chamber throat separately. The formation of thermal NO and soot are simulated and analyzed.
Technical Paper

In-Cylinder Measurements and Analysis on Fundamental Cold Start and Warm-up Phenomena of SI Engines

1995-10-01
952394
A recently developed Laser Raman Scattering system was applied to measure the in-cylinder air-fuel ratio and the residual gas content (via the water content) of the charge simultaneously in a firing spark-ignition engine during cold start and warm-up. It is the main objective of this work to elucidate the origin of misfires and the necessity to over-fuel at cool ambient temperatures. It turns out that the overall air-fuel ratio and residual gas content (in particular the residual water content) of the charge appear to be the most important parameters for the occurrence of misfires (without appropriate fuel enrichment), i.e., the engine behaviour from cycle to cycle becomes rather predictable on the basis of these data. An alternative explanation for the necessity to over-fuel is given.
X