Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Optimizing the Effects of Body Attachment Stiffness on Steering Column In-Vehicle Modes

2001-03-05
2001-01-0041
This paper presents an unambiguous and intuitive method for identification of steering column resonant (SCR) mode of vibration. One simple but overlooked technique to determine the SCR mode in-vehicle is to provide local stiffnesses of the body locations where the Instrument Panel (IP) attaches, to the IP suppliers to be used in their design and development. This paper describes how this technique is useful in predicting the first few important in-vehicle steering column modes for different classes of vehicles, with examples presented in each class. The results obtained from such analyses are compared against those from direct in-buck simulations. This technique is not limited to its application in developing IP systems, but can easily be extended to include other systems such as seats, fuel tanks, etc. Also it is shown that a design optimization analysis may be performed using these attachment stiffnesses as design variables resulting in a system level solution.
Technical Paper

Using CAE to Guide Passenger Airbag Door Design for Optimal Head Impact Performance

1997-02-24
970772
The increased focus on occupant protection by automobile manufacturers combined with incessant consumer demand for safety features such as dual airbags has posed design engineers with major challenges in the field of Instrument Panel (IP) design. Typically, airbags are designed to deploy when the speed of the automobile is above 13 mph in a frontal impact. The airbag door should meet head impact requirements for unbelted occupants involved in low speed impacts (<15mph) when airbags are not deployed. This paper describes how computer aided engineering (CAE) simulation techniques were used in improving the design of the passenger airbag door of a full size van for head impact performance. Fewer tests were conducted primarily for validation, which resulted in significantly less prototypes, costs and time.
X