Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Volumetric Efficiency Model for Variable Cam-Phasing and Variable Valve Lift Applications

2008-04-14
2008-01-0995
This paper outlines the derivation of an analytical volumetric efficiency model that can be used in mean-value engine models or in air estimation algorithms for variable cam phasing and two step valve lift applications. The model is the product of a physics-based modeling approach. It accounts for the most prominent effects that occur during the gas exchange phase of a four cycle combustion process. Variable valve lift and valve timing are intrinsically modeled in terms of their geometric nature. The gas pressure trajectory, which has a crucial impact on the volumetric efficiency, is modeled via piece-wise linear approximation functions. The proposed model has a total of 16 regression parameters that need to be adjusted on the basis of experimental data. The model validation is based on four sets of engine mapping data, each set pertaining to one particular valve lift mode but otherwise spanning the entire engine operating envelope in terms of speed, load and cam-phasing positions.
Technical Paper

On-Line Identification of Air-to-Fuel Ratio Dynamics in a Sequentially Injected SI Engine

1993-03-01
930857
The problem of adaptively controlling the mixture ratio can be reduced to the problem of identifying the respective non-linear system dynamics [ 19]. In the present paper, convenient models of the significant dynamic processes, i.e., intake manifold, wall-wetting and oxygen sensor dynamics, arc deduced. We will separate the analysis in terms of an air and a fuel path. Concerning the fuel path we restrict our attention exclusively to linear sensor models in order to keep the modelling overhead small. Nevertheless, considering the overall dynamics, we will have to deal with some inherent non-linearities. Suitable parametrizations of these models with respect to the demands imposed by the filtering techniques are then introduced. In the case of linear dynamics we aim to achieve a linear regression form whereas in the case of non-linear dynamics, we will augment the system state and apply extended Kalman filter theory.
Technical Paper

A New Model for Fuel Supply Dynamics in an SI Engine

1994-03-01
940208
In this paper we introduce an improved model for the fuel supply dynamics in an SI engine. First, we briefly investigate all the thermodynamic phenomena which are assumed to have a significant impact on fuel flow into the cylinder (i.e., fuel atomization, droplet decay, wall-wetting, film evaporation, and mixture flow back). This theoretical analysis results in a basic set of dynamic equations. Unfortunately, these equations are not convenient to use for control purposes. Therefore, we proceed to a simplified formulation. Several unknown parameters remain, describing phenomena which are difficult to quantify, such as heat and material transfer characteristics. These parameters are subject to operating conditions and are not discussed further. In order to validate the model dynamics, we refer to frequency and step response measurements performed on a 4-cylinder, 1.8 liter BMW engine with sequential fuel injection.
Technical Paper

Model-Based Adaptive Fuel Control in an SI Engine

1994-03-01
940374
This paper introduces a model-based adaptive controller designed to compensate mixture ratio dynamics in an SI engine. In the basic model the combined dynamics of wall-wetting and oxygen sensor have to be considered because the only information about process dynamics originates from measuring exhaust λ. The controller design is based on the principles of indirect Model Reference Adaptive Control (MRAC). The indirect approach connotes that explicit identification of the system parameters is required for the determination of the controller parameters. Due to nonlinearities and delays inherent in the process dynamics, an adaptive extended Kalman filter is used for identification purposes. The Kalman filter method has already been described in detail within an earlier paper [1]. It proves to be ideally suited to deal with nonlinear identification problems. The estimated parameters are further used to tune an adaptive observer for wall-wetting dynamics.
Technical Paper

Model-Based Software Development: Functional Safety Compliance via Built-In Tool Intelligence

2019-04-02
2019-01-1041
Today’s automobiles are among the most sophisticated machines on the planet. Much of the functionality of modern automobiles emanates from embedded software features that control electronic, mechanical or pneumatic devices. Over the past few decades the number of software features and the associated code has grown exponentially and the respective embedded software systems have reached a level of complexity which is increasingly difficult to manage. As a consequence, recalls due to software defects have become a major concern and today constitute about 50% of the overall warranty cost [1]. Since the operation of automobiles has severe public safety implications, the development of embedded automotive software has become subject to stringent functional safety standards (ISO 26262) and compliance with these standards has become a major hurdle in the development of automotive software.
X