Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

The Effect of Belt-Drive CVT Fluid on the Friction Coefficient Between Metal Components

1997-10-01
972921
A block-on-ring friction and wear testing machine (LFW-1) was used as a test method for making fundamental evaluations of the effect of the Belt-Drive Continuously Variable Transmission(B-CVT) fluid on the friction coefficient between the belt and pulleys. The results confirmed that this method can simulate the friction phenomena between the belt and pulleys of an actual transmission. The mechanism whereby ZDDP and some Ca detergents improve the torque capacity of a B-CVT was also investigated along with the effect of the deterioration of these additives on the friction coefficient. It was found that these additives form a film, 80-90 nm in thickness, on the sliding surface, which is effective in increasing the friction coefficient. The friction coefficient declined with increasing additive deterioration. The results of a 31P-NMR analysis indicated that the decline closely correlated with the amount of ZDDP in the B-CVT fluid.
Technical Paper

Improvement of Thermal Efficiency Using Fuel Reforming in SI Engine

2010-04-12
2010-01-0584
Hydrogen produced from regenerative sources has the potential to be a sustainable substitute for fossil fuels. A hydrogen internal combustion engine has good combustion characteristics, such as higher flame propagation velocity, shorter quenching distance, and higher thermal conductivity compared with hydrocarbon fuel. However, storing hydrogen is problematic since the energy density is low. Hydrogen can be chemically stored as a hydrocarbon fuel. In particular, an organic hydride can easily generate hydrogen through use of a catalyst. Additionally, it has an advantage in hydrogen transportation due to its liquid form at room temperature and pressure. We examined the application of an organic hydride in a spark ignition (SI) engine. We used methylcyclohexane (MCH) as an organic hydride from which hydrogen and toluene (TOL) can be reformed. First, the theoretical thermal efficiency was examined when hydrogen and TOL were supplied to an SI engine.
Technical Paper

Impact of Oil-derived Ash on Continuous Regeneration-type Diesel Particulate Filter - JCAPII Oil WG Report

2004-06-08
2004-01-1887
Impact of oil-derived ash on the pressure drop of continuous regeneration-type diesel particulate filter (CR-DPF) was investigated through 600hrs running test at maximum power point on a 6.9L diesel engine, which meets the Japanese long-term emission regulations enacted in 1998, using approximately 50ppm sulfur content fuel. Sulfated ash content of test oils were varied as 0.96, 1.31, and 1.70 mass%, respectively. During the running test, the exhaust pressure drop through CR-DPF was measured. And after the test, the ventilation resistance through CR-DPF was also evaluated before and after the baking process, which was applied to eliminate the effect of soot accumulated in CR-DPF. The results revealed that the less sulfated ash in oil gave rise to lower pressure drop across CR-DPF. According to microscope examination of the baked DPF, ash was mainly accumulated on the wall surface of CR-DPF, and that seemed to be related to the magnitude of pressure drop caused by ash.
Technical Paper

Development of 0W-20 ILSAC GF-3 Gasoline Engine Oil

2002-05-06
2002-01-1636
A new 0W-20 gasoline engine oil was developed to improve fuel economy over ILSAC GF-2 5W-20 gasoline engine oils and to meet ILSAC GF-3 requirements. The main improvements made were to viscosity and friction modifiers. Viscosity at 80°C was adjusted to obtain better fuel economy than with 5W-20 oil in the Japanese 10-15 mode test. Therefore, low-temperature viscosity decreased to 0W and high-temperature high-shear viscosity exceeds 2.6 mPa?s. Friction modifiers and other additives were investigated to find the lowest friction characteristics. The resulting formulation shows more than a 2.0% fuel economy gain in the Japanese 10-15 mode test and the new oil has been certified as meeting ILSAC GF-3 requirements.
Technical Paper

Improved Thermal Efficiency using Hydrous Ethanol Reforming in Advanced Spark-Ignition Engines

2016-10-17
2016-01-2262
Bio-ethanol can be produced from several type of biomass, and the CO2 emission of bio-ethanol is low compared with gasoline. Bio-ethanol is a high octane fuel, therefore, it has characteristics that allow it to burn at a high compression ratio condition. However, bio-ethanol is usually refined to be high purity ethanol (>99.5%). It requires much energy to refine; thus large-scale refinery plants are needed, increasing the cost of refining bio-ethanol. High purity ethanol (>99.5%) can be refined after fermentation and a distillation. If hydrous ethanol can be used as a fuel for engines, the distillation process can be simplified. As a result, the costs of refinement can be reduced. An innovated engine can be developed by using hydrous ethanol as the fuel because three highly efficient methods can be combined. First, exhaust heat can be recovered by the steam reforming of hydrous ethanol. Second, the reformed gas, which contains hydrogen, can be combusted under dilute conditions.
Technical Paper

Improved Thermal Efficiency Using Hydrous Ethanol Reforming in SI Engines

2013-09-08
2013-24-0118
The internal combustion engines waste large amounts of heat energy, which account for 60% of the fuel energy. If this heat energy could be converted to the output power of engines, their thermal efficiency could be improved. The thermal efficiency of the Otto cycle increases as the compression ratio and the ratio of specific heat increase. If high octane number fuel is used in engines, their thermal efficiency could be improved. Moreover, thermal efficiency could be improved further if fuel could be combusted in dilute condition. Therefore, exhaust heat recovery, high compression combustion, and lean combustion are important methods of improving the thermal efficiency of SI engines. These three methods could be combined by using hydrous ethanol as fuel. Exhaust heat can be recovered by the steam reforming of hydrous ethanol. The reformed gas including hydrogen can be combusted in dilute condition. In addition, it is cooled by directly injecting hydrous ethanol into the engine.
Technical Paper

Performance of a CVT Fluid for High Torque Transmitting Belt-CVTs

1998-10-19
982675
A new belt-drive continuously variable Transmission (B-CVT) was introduced into the Japanese market in September 1997 by Nissan Motor Co., Ltd. It transmits a maximum torque of 196 Nm and represents a major breakthrough of the torque limit transmitted by B-CVTs, thus opening a new epoch for the automatic transmission. The major features of the CVT are transmission of high torque between a steel belt and pulleys, electronic control of high hydraulic-pressure to pulleys and a torque converter with an electronically controlled lockup clutch engaging at low vehicle speeds. A CVT fluid formulated for this CVT was designed to optimize these features and this paper describes the performance of the CVT fluid in lab-scale tests and an endurance test of the CVT unit. In order to realize high torque transmission between a steel belt and pulleys, high friction between metal/metal contacts is required with normal wear.
X