Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Study of Bolt Model to Improve Accuracy of Engine Vibration Analysis

2010-09-28
2010-32-0026
To improve the accuracy of engine vibration analysis, the bolt model which fastens an engine head and an engine block had been developed. In the conventional method of engine vibration analysis, the bolt was modeled with a rigid bar. However, it is seen that the power plant rigidity becomes higher in proportion to the rigid bar bolt length. So, to precisely predict the vibration property of engine parts, the elastic deformation of the bolt was considered in this paper. It is known that the parameters, which are Young's modulus, the length of bolts, the distance between bolts, the area of contact plane, the tightening torque and so on, have a great influence on the performance of the engine vibration model. This paper describes a study of FE bolt model to correlate eigenvalue and mode shapes with the test result. The effects of following parameters were investigated: 1) Bolt model with elastic material 2) Rigidity of bolted-connection in tightening plane.
Technical Paper

Research into the Propeller Strut for High Speed Outboard Motor

1995-09-01
951822
For better performance of outboard motors for high speed craft, improvement in the performance of the propeller strut located ahead of the propeller is indispensable in addition to ameliorating the performance of the screw propeller itself. Thus, it is extremely important to reduce the drag of the propeller strut, which accounts for the predominant portion of the submerged parts of the motor and hull when the craft is running at high speed and to improve the propeller efficiency in the wake of the propeller strut. This paper, taking up two different shapes of the propeller strut, compares the performances of the propeller placed in the wake of the propeller strut in tank tests, and discusses the drag of the propeller strut. The two propeller strut shapes are that of a 70% scaled down model of the propeller strut SUZUKI's 200 PS outboard motor and its improved version.
Technical Paper

Prediction of Engine Mount Vibration using Multi Body Simulation with Finite Element Models

2005-10-12
2005-32-0006
This paper discusses the prediction method of engine mount vibration using multi body simulation (MBS) with FE models in power plant assembly. In this analysis, some parts of the power plant were modeled with shell type elements and solid type elements, and modal parameters from FEA were imported into MBS, which method is called “Component Mode Synthesis”. For this analysis, the computational models of Suzuki 660cc in-line 3-cylinder engine with 4-speed automatic transmission were used. The flexibility of some engine parts was considered using FE models regarding the cylinder block, the crankshaft, the transmission case, etc. Also the properties of stiffness and viscous damping of the engine mount bushings were considered and the properties of the hydrodynamic oil film at the journal bearings were modeled with “Enhanced Short Bearing Model”. Accelerations at each engine mount were calculated.
Technical Paper

Estimating of Motorcycle Frame Strength by Virtual Durability Test

2009-11-03
2009-32-0143
The computational method and the CAE technique have been developed to evaluate durability performance of a motorcycle body. The computational method in this study consists of three parts of simulation. The first is the mode analysis of the body parts. The second is the multi body dynamics simulation, which calculates forces loaded into the frame of a motorcycle body equivalent to actual durability tests. The third is the static structure analysis, which calculates stress distribution using the forces calculated by the multi body dynamics simulation as boundary conditions. Also, two kinds of durability tests, that are the chassis durability test and the falling durability test, are simulated in this study.
Technical Paper

Simultaneous Evaluation on Aerodynamics and Air-cooling Performances for Motorcycle using CFD Analysis

2009-11-03
2009-32-0138
In order to optimize the balance between aerodynamics and air-cooling performances for a motorcycle, a simulation method of external flow around a vehicle has been developed. In this paper, steady-state flow calculations were performed using two types of turbulence models, the realizable k-ε and the SST k-ω, and two levels of mesh sizes of computational models and their results were compared. To validate the computational results, wind tunnel tests were conducted and CD, CL and mean velocity of flow passing through heat exchangers were measured. The computational results on drag coefficient and mean velocity show good agreements with the experimental ones.
Technical Paper

Prediction Method of Speed Characteristics of V-Belt CVT

2011-11-08
2011-32-0643
The Mechanical CVT is mainly used for small size motorcycle called “scooter”, which has a 250 cc or less engine capacity. The speed characteristics of the Mechanical CVT are decided by engine speed and load-torque on driven pulley. In few papers, these characteristics are studied under full-load or no-load condition [1]-[2]. However, the characteristics at part-load condition are not well known. To develop a motorcycle with low fuel consumption, it is important that the characteristics at part-load condition are considered in driving cycle. Driving cycle simulation is needed to estimate CVT ratio at design stage. This research proposes equations representing the speed characteristics of the Mechanical CVT at part-load condition. Driving cycle simulation is also developed for estimation of the fuel consumption at optional driving cycles and the dynamic behavior of the CVT system. It could be a CVT design tool to makes sure whether its performance is achieved for design targets.
Technical Paper

Radiation Noise Analysis for Electric Scooter Swing-arm

2011-11-08
2011-32-0650
Traditionally, a Boundary Element Method (BEM) is often used for a radiation noise analysis. In recent years, to define an infinite region, a Finite Element Method (FEM) that can use an infinite boundary condition has been developed. However, studies on the radiation noise analysis by the FEM are few. Recently a number of an electric scooter has been increased. One of development issues is a radiation noise by a vibration of a wall surface of a swing-arm. In this paper, the vibration of the wall surface of the swing-arm is calculated, and a sound pressure level (SPL) of the radiation noise is calculated using a result of the frequency response analysis. And compare results of an experimental and an analytical sound pressure, its results were matched to within 5% error. Furthermore we used the method of this paper, proposed the model to reduce the radiation noise 10dB. Then we compare with the FEM and the BEM to verify the computation time and the mesh size.
X