Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Treasuri2/FE: A Tool for the FE Simulation of Sound Package Parts Fully Integrated in Nastran

2009-05-19
2009-01-2216
Porous materials are extensively used in the construction of automotive sound package parts, due to their intrinsic capability of dissipating energy through different mechanisms. The issue related to the optimization of sound package parts (in terms of weight, cost, performances) has led to the need of models suitable for the analysis of porous materials' dynamical behavior and for this, along the years, several analytical and numerical models were proposed, all based on the system of equations initially developed by Biot. In particular, since about 10 years, FE implementations of Biot's system of equations have been available in commercial software programs but their application to sound package parts has been limited to a few isolated cases. This is due, partially at least, to the difficulty of smoothly integrating this type of analyses into the virtual NVH vehicle development.
Journal Article

Biomechanical Evaluation of Headwear System Prototypes using Digital Human Modeling

2009-06-09
2009-01-2267
Digital human modeling allows for the evaluation of equipment designs before physically building and testing prototypes. This paper presents an example of how digital human modeling was used to perform biomechanical studies on four new designs for future infantry headwear systems. Range of Motion (ROM) and cervical spine forces and moments were compared using static and dynamic simulations in a virtual environment. Results confirmed that headwear system prototypes with optimal overall mass and Centre of Mass (CM) location, as determined by previous human subject trials, exerted the least amount of biomechanical loading. Facial protection was favorable when considering forces and moments in the cervical spine, however when considering ROM, the rigid prototype mandible guards used in this evaluation are not recommended. The shape of a more accommodating mandible guard was developed, and the option to remove facial protection for some tasks was recommended.
Journal Article

Dynamic Analysis of Car Ingress/Egress Movement: an Experimental Protocol and Preliminary Results

2009-06-09
2009-01-2309
This paper focuses on full body dynamical analysis of car ingress/egress motion. It aims at proposing an experimental protocol adapted for analysing joint loads using inverse dynamics. Two preliminary studies were first performed in order to 1/ define the main driver/car interactions so as to allow measuring the contact forces at all possible contact zones and 2/ identify the design parameters that mainly influence the discomfort. In order to verify the feasibility of the protocol, a laboratory study was carried out, during which two subjects tested two car configurations. The experimental equipment was composed of a variable car mock-up, an optoelectronic motion tracking system, two 6D-force plates installed on the ground next to the doorframe and on the car floor, a 6D-Force sensor between the steering wheel and the steering column, and two pressure maps on the seat. Motions were reconstructed from measured surface markers trajectories using inverse kinematics.
Journal Article

Fuel Economy Benefits of a Flywheel & CVT Based Mechanical Hybrid for City Bus and Commercial Vehicle Applications

2009-10-06
2009-01-2868
Hybrid drivetrain systems are becoming increasingly prevalent in Automotive and Commercial Vehicle applications and have also been introduced for the 2009 Formula1 motorsport season. The F1 development has the clear intent of directing technical development in motorsport to impact the key issue of fuel efficiency in mainstream vehicles. In order to promote all technical developments, the type of system (electrical, mechanical, hydraulic, etc) for the F1 application has not been specified. A significant outcome of this action is renewed interest and development of mechanical hybrid systems comprising a high speed composite flywheel and a full-toroidal traction drive Continuously Variable Transmission (CVT). A flywheel based mechanical hybrid has few system components, low system costs, low weight and dispenses with the energy state changes of electrical systems producing a highly efficient and power dense hybrid system.
Journal Article

Inferential Sensing Techniques to Enable Condition Based Maintenance

2009-10-06
2009-01-2912
Inferential sensing, as it relates to the equipment operator, can be viewed as human intuition [1]. The person operating the equipment can sense there is something wrong while their intuition tells them when and what needs troubleshooting and repair. Attempts have been made to implement this human intuition model to monitor a vehicle operation and detect abnormalities. In many approaches traditional sensors are added to the vehicle which increases cost, complexity, and another failure point. After years of developments and techniques, there are few highly reliable on-board systems that can duplicate the human intuition model since the specific failure cannot be directly measured but must be inferred from a variety of symptoms. This paper describes an engineering approach using Physics of Failure (PoF) for specific subsystems, developing the applicable fatigue models, and then collecting, monitoring, and manipulating the real-time on-vehicle data to complement the “operator intuition”.
Journal Article

Verification and Validation According to IEC 61508: A Workflow to Facilitate the Development of High-Integrity Applications

2009-10-06
2009-01-2929
Model-Based Design with production code generation has been extensively utilized throughout the automotive software engineering community because of its ability to address complexity, productivity, and quality challenges. With new applications such as lane departure warning or electromechanical steering, engineers have begun to consider Model-Based Design to develop embedded software for applications that need to comply with safety standards such as IEC 61508. For in-vehicle applications, IEC 61508 is often considered state-of-the-art or generally accepted rules of technology (GART) for development of high-integrity software [6, 11]. In order to demonstrate standards compliance, the objectives and recommendations outlined in IEC 61508-3 [8] must be mapped onto processes and tools for Model-Based Design. This paper discusses a verification and validation workflow for developing in-vehicle software components which need to comply with IEC 61508-3 using Model-Based Design.
Journal Article

Improving the Supply Chain by Sharing Intelligent Technical Data Packages

2009-11-10
2009-01-3137
For many suppliers in the aerospace value chain, business commences when the customer shares the Technical Data Package (TDP) that defines the detailed requirements for a specific part. To convert the customer TDP into the necessary internal documentation, suppliers must expend large amounts of effort. This generally involves passing along copies of the TDP to each functional discipline, which not only results in redundant and laborious work, but it introduces technical risk. There are now software tools available that enable an intelligent TDP that provides more value than just sharing a 3D CAD model. These tools electronically organize and integrate all elements of the TDP independent of the PLM software in use. The application of the intelligent TDP has enabled a 30% reduction in supply chain inefficiencies.
Journal Article

Architecture Driven Development for Cyber Physical Systems

2009-11-10
2009-01-3263
Cyber-physical systems consisting of networks of interacting systems are often developed by distributed teams in a production environment. Processes, tools and work products supporting development of cyber-physical systems are continuously evolving through the different design phases. A growing trend to manage the development process has been the use of model-based development approaches. However, these approaches primarily use behavioral models to represent complex systems, rendering them inadequate to address collaborative and non-functional program requirements. This paper discusses an architecture-driven process that can address the challenges posed during the development of cyber-physical systems. Two key enabling technologies – the SAE AADL (Architecture Analysis and Design Language) and the IME (Integrated Modeling Environment) are leveraged in this process.
Journal Article

A Novel Technique for Investigating the Nature and Origins of Deposits Formed in High Pressure Fuel Injection Equipment

2009-11-02
2009-01-2637
Recent developments in diesel fuel injection equipment coupled with moves to using ULSD and biodiesel blends has seen an increase in the number of reports, from both engine manufacturers and fleet operators, regarding fuel system deposit issues. Preliminary work performed to characterise these deposits showed them to be complicated mixtures, predominantly carbon like but also containing other possible carbon precursor materials. This paper describes the application of the combination of hydropyrolysis, gas chromatography and mass spectrometry to the analysis of these deposits. It also discusses the insights that such analysis can bring to the constitution and origin of these deposits.
Journal Article

Online Implementation of an Optimal Supervisory Control for a Parallel Hybrid Powertrain

2009-06-15
2009-01-1868
The authors present the supervisory control of a parallel hybrid powertrain, focusing on several issues related to the real-time implementation of optimal control based techniques, such as the Equivalent Consumption Minimization Strategies (ECMS). Real-time implementation is introduced as an intermediate step of a complete chain of tools aimed at investigating the supervisory control problem. These tools comprise an offline optimizer based on Pontryagin Minimum Principle (PMP), a two-layer real-time control structure, and a modular engine-in-the-loop test bench. Control results are presented for a regulatory drive cycle with the aim of illustrating the benefits of optimal control in terms of fuel economy, the role of the optimization constraints dictated by drivability requirements, and the effectiveness of the feedback rule proposed for the adaptation of the equivalence factor (Lagrange multiplier).
Journal Article

Residual Stress Analysis of Punched Holes in 6013 Aluminum Alloy Commercial Vehicle Side Rails

2010-10-05
2010-01-1909
Compliance with tighter emission regulations has increased the proportion of parasitic weight in commercial vehicles. In turn, the amount of payload must be reduced to comply with transportation weight requirements. A re-design of commercial vehicle components is necessary to decrease the vehicle weight and improve payload capacity. Side rails have traditionally been manufactured from high strength steels, but significant weight reductions can be achieved by substituting steel side rails with 6013 high strength aluminum alloy side rails. Material and stress analyses are presented in this paper in order to understand the effect of manufacturing process on the material's mechanical behavior. Metallographic and tensile test experiments for the 6013-T4 alloy were performed in preparation for residual stress measurements of a punching operation. Punched holes are critical to the function of the side rail and can lead to high stress levels and cracking.
Journal Article

Mitigating Heavy Truck Rear-End Crashes with the use of Rear-Lighting Countermeasures

2010-10-05
2010-01-2023
In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks (i.e., gross vehicle weight greater than 4,536 kg). The Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed by the Federal Motor Carrier Safety Administration (FMCSA) to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Visual warnings have been shown to be effective, assuming the following driver is looking directly at the warning display or has his/her eyes drawn to it. A visual warning can be placed where it is needed and it can be designed so that its meaning is nearly unambiguous. FMCSA contracted with the Virginia Tech Transportation Institute (VTTI) to investigate potential benefit of additional rear warning-light configurations as rear-end crash countermeasures for heavy trucks.
Journal Article

Deposit Control in Modern Diesel Fuel Injection Systems

2010-10-25
2010-01-2250
Modern diesel Fuel Injection Equipment (FIE) systems are susceptible to the formation of a variety of deposits. These can occur in different locations, e.g. in nozzle spray-holes and inside the injector body. The problems associated with deposits are increasing and are seen in both Passenger Car (PC) and Heavy Duty (HD) vehicles. Mechanisms responsible for the formation of these deposits are not limited to one particular type. This paper reviews FIE deposits developed in modern PC and HD engines using a variety of bench engine testing and field trials. Euro 4/ IV and Euro 5/V engines were selected for this programme. The fuels used ranged from fossil only to distillate fuels containing up to 10% Fatty Acid Methyl Ester (FAME) and then treated with additives to overcome the formation of FIE deposits.
Journal Article

ESC Performance of Aftermarket Modified Vehicles: Testing, Simulation, HIL, and the Need for Collaboration

2010-10-19
2010-01-2342
The enactment of FMVSS 126 requires specific safety performance in vehicles 4,536 Kg (10,000 pounds) or less using an Electronic Stability Control (ESC) system as standard equipment by 2011. Further, in 2012, the regulation requires vehicles that have undergone aftermarket modification to remain in compliance with the performance standard. This paper describes: • a brief overview of the standard and its implications • the collaborative approach used in the first successful approach in meeting that requirement by a lift kit manufacturer o a Hardware In the Loop (HIL) test alternative for establishing a reasonable expectation for a vehicle to demonstrate compliance after modification. • Collaborative challenges overcome: o aftermarket manufacturers seeking information sharing with OEMs and Tier One suppliers: o respecting the intellectual property of OEMs and Tier One suppliers o maintaining the integrity between tool competitors and their customers in cross-collaborative efforts
Journal Article

Neutron Diffraction Studies of Intercritically Austempered Ductile Irons

2011-04-12
2011-01-0033
Neutron diffraction is a powerful tool that can be used to identify the phases present and to measure the spacing of the atomic planes in a material. Thus, the residual stresses can be determined within a component and/or the phases present. New intercritically austempered irons rely on the unique properties of the austenite phase present in their microstructures. If these materials are to see widespread use, methods to verify the quality (behavior consistency) of these materials and to provide guidance for further optimization will be needed. Neutron diffraction studies were performed at the second generation neutron residual stress facility (NRSF2) at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory on a variety of intercritically austempered irons. For similar materials, such as TRIP steels, the strengthening mechanism involves the transformation of metastable austenite to martensite during deformation.
Journal Article

An Integrated Design Method for Articulated Heavy Vehicles with Active Trailer Steering Systems

2010-04-12
2010-01-0092
This paper presents an integrated design method for active trailer steering (ATS) systems of articulated heavy vehicles (AHVs). Of all contradictory design goals of AHVs, two of them, i.e. path-following at low speeds and lateral stability at high speeds, may be the most fundamental and important, which have been bothering vehicle designers and researchers. To tackle this problem, a new design synthesis approach is proposed: with design optimization techniques, the active design variables of ATS systems and passive design variables of trailers can be optimized simultaneously; the ATS controller derived from this approach has two operational modes, one for improving lateral stability at high speeds and the other for enhancing path-following at low speeds. To demonstrate the effectiveness of the proposed approach, it is applied to the design of an ATS system for an AHV with a tractor and a full trailer.
Journal Article

Integration of a Torsional Stiffness Model into an Existing Heavy Truck Vehicle Dynamics Model

2010-04-12
2010-01-0099
Torsional stiffness properties were developed for both a 53-foot box trailer and a 28-foot flatbed control trailer based on experimental measurements. In order to study the effect of torsional stiffness on the dynamics of a heavy truck vehicle dynamics computer model, static maneuvers were conducted comparing different torsional stiffness values to the original rigid vehicle model. Stiffness properties were first developed for a truck tractor model. It was found that the incorporation of a torsional stiffness model had only a minor effect on the overall tractor response for steady-state maneuvers up to 0.4 g lateral acceleration. The effect of torsional stiffness was also studied for the trailer portion of the existing model.
Journal Article

Handling and Ride Performance Sensitivity Analysis for a Truck-Trailer Combination

2010-04-12
2010-01-0642
A truck-trailer combination is modeled using ADAMS/Car from MSC Software for handling and ride comfort performance simulations. The handling events include a double lane change and lateral roll stability. The ride comfort performance events include several sized half-rounds and various RMS courses. The variables for handling performance evaluation include lateral acceleration, roll angles and tire patch normal loads. The variables for ride performance evaluation are absorbed power and peak acceleration. This study considers the trailer spring stiffness, anti-roll bar and jounce bumper gap as the design variables. Through DOE simulations, we derived the response surface models of various performance variables so that we could consider the performance sensitivities to the design variables.
Journal Article

Experimental and Analytical Evaluations of a Torsio-Elastic Suspension for Off-Road Vehicles

2010-04-12
2010-01-0643
The ride performance potentials of a prototype torsio-elastic axle suspension for an off-road vehicle were investigated analytically and experimentally. A forestry vehicle was fitted with the prototype suspension at its rear axle to assess its ride performance benefits. Field measurements of ride vibration along the vertical, lateral, fore-aft, roll and pitch axes were performed for the suspended and an unsuspended vehicle, while traversing a forestry terrain. The measured vibration responses of both vehicles were evaluated in terms of unweighted and frequency-weighted rms accelerations and the acceleration spectra, and compared to assess the potential performance benefits of the proposed suspension. The results revealed that the proposed suspension could yield significant reductions in the vibration magnitudes transmitted to the operator's station.
Journal Article

Deformation Analysis of Incremental Sheet Forming

2010-04-12
2010-01-0991
Incremental Sheet Forming (ISF) is an emerging sheet metal prototyping technology where a part is formed as one or more stylus tools are moving in a pre-determined path and deforming the sheet metal locally while the sheet blank is clamped along its periphery. A deformation analysis of incremental forming process is presented in this paper. The analysis includes the development of an analytical model for strain distributions based on part geometry and tool paths; and numerical simulations of the forming process with LS-DYNA. A skew cone is constructed and used as an example for the study. Analytical and numerical results are compared, and excellent correlations are found. It is demonstrated that the analytical model developed in this paper is reliable and efficient in the prediction of strain distributions for incremental forming process.
X