Refine Your Search

Topic

Author

Search Results

Standard

GUIDE TO MANIFOLD ABSOLUTE PRESSURE TRANSDUCER REPRESENTATIVE TEST METHOD

1981-06-01
CURRENT
J1346_198106
This guide is intended to cover test procedures applicable to MAP transducers; it is also applicable to transducers such as Barometric (Ambient) Absolute Pressure transducers, Manifold Vacuum transducers, and similar pressure transducers used in automotive systems. Although oriented towards active devices (those using internal signal conditioning), it can be applied to passive devices with minor modifications.
Standard

Comparison of GATS Messages to SAE ATIS Standards

2002-02-22
HISTORICAL
J2539_200202
This SAE Information Report provides a comparative summary between the various messages found in the SAE ATIS standards work (notably SAE J2313, J2353, J2354, J2369 and J2374) and that found in the GATS standard (Global Automotive Telematics Standard). GATS is a message set meant to be deployed on mobile phone systems based on the GSM (Global System for Mobile Communication) phone system which is being deployed in European markets and which the SAE may need to harmonize with as part of the World Standards activities of TC204. This document provides an overview of the various types of supported messages and how they compare with US terms and messages. Some selected features of the GATS work are recommended for assimilation into the next revision of ATIS standards. No attempt at determining a U.S. policy in this regard is provided. This document seeks to provide the reader familiar with SAE ATIS with a high level overview of technical knowledge of the GATS approach in similar areas.
Standard

Comparison of GATS Messages to SAE ATIS Standards

2019-06-11
CURRENT
J2539_201906
This SAE Information Report provides a comparative summary between the various messages found in the SAE ATIS standards work (notably SAE J2313, J2353, J2354, J2369 and J2374) and that found in the GATS standard (Global Automotive Telematics Standard). GATS is a message set meant to be deployed on mobile phone systems based on the GSM (Global System for Mobile Communication) phone system which is being deployed in European markets and which the SAE may need to harmonize with as part of the World Standards activities of TC204. This document provides an overview of the various types of supported messages and how they compare with US terms and messages. Some selected features of the GATS work are recommended for assimilation into the next revision of ATIS standards. No attempt at determining a U.S. policy in this regard is provided. This document seeks to provide the reader familiar with SAE ATIS with a high level overview of technical knowledge of the GATS approach in similar areas.
Standard

Parking Brake Control Identification - Vehicles with Hydraulic Brake Systems and Automatic Transmissions

2012-04-09
HISTORICAL
J2688_201204
The scope and purpose of the SAE Recommended Practice is to provide standards for the control and indication of parking brakes in hydraulic braked vehicles over 4540 kg (10 000 lb) GVWR. This recommended practice pertains to automatic transmission applications and supplements the SAE J915 recommended practice. This recommended practice does not address parking brake system performance. Parking brake system performance, both static and dynamic conditions, is the responsibility of the OEM vehicle manufacturer or manufacturers that modify the vehicle by adding special vocational required equipment (such as but not limited to outriggers, cranes, etc.).
Standard

Parking Brake Control Identification - Vehicles with Hydraulic Brake Systems and Automatic Transmissions

2016-02-18
HISTORICAL
J2688_201602
The scope and purpose of the SAE Recommended Practice is to provide standards for the control and indication of parking brakes in hydraulic braked vehicles over 4540 kg (10000 lb) GVWR. This recommended practice pertains to automatic transmission applications and supplements the SAE J915 recommended practice. This recommended practice does not address parking brake system performance. Parking brake system performance, both static and dynamic conditions, is the responsibility of the OEM vehicle manufacturer or manufacturers that modify the vehicle by adding special vocational required equipment (such as but not limited to outriggers, cranes, etc.).
Standard

Measurement of Aerodynamic Performance for Mass-Produced Cars and Light-Duty Trucks

2019-10-09
CURRENT
J2881_201910
This Recommended Practice provides a procedure for measuring and documenting the aerodynamic performance in a full-scale wind tunnel of passenger vehicles, i.e., mass-produced cars and light-duty trucks intended primarily for individual consumers. Testing or numerical modeling of pre-production and/or reduced-scale models is outside the scope of this document. Aerodynamic development procedures, i.e., methods to improve or optimize aerodynamic performance, are also excluded. It is well-known that aerodynamic performance results depend significantly on vehicle content and loading, as well as the wind tunnel itself (type, scale, and simulation qualities of the wind tunnel). Publication of non-standard test results causes unnecessary additional development work and incorrect perception of a vehicle’s anticipated aerodynamic performance by government, academia, and the general public.
Standard

Road Vehicles - High Pressure Fuel Injection Pipe End - Connections With 60 Degree Female Cone

2015-11-24
CURRENT
J1949_201511
This SAE Standard specifies the dimensional requirements for the assembly of high-pressure pipe connections for compression-ignition (diesel) engine fuel injection equipment. It applies to 60 deg female cones with external threaded connectors types 1 and 2, and to the internal threaded tube nuts and male cone type end assembly of high- pressure pipe connections for tubes with diameters up to 12 mm inclusive.
Standard

Brake Hydraulic Component Flow Rate Measurement for High Differential Pressure (>5 bar)

2017-05-18
CURRENT
J3052_201705
This recommended practice provides a method, test set-up, and test conditions for brake hydraulic component flow rate measurement for high differential pressure (>5 bar) flow conditions. It is intended for hydraulic brake components which affect the brake fluid flow characteristics in a hydraulic brake circuit, that are part of a circuit for which the flow characteristics are important to system operation, and that are exposed to high operating pressure differentials (in the 5 to 100 bar range). Typical applications may include measurement of flow through chassis controls valve bodies, orifices in the brake system such as in flow bolts, junction blocks, and master cylinders, and through brake pipe configurations.
Standard

Measuring Properties of Li-Ion Battery Electrolyte

2021-01-27
CURRENT
J3042_202101
This SAE Recommended Practice provides a set of test methods for characterizing lithium-ion battery electrolytes. These test methods are applicable to existing electrolyte materials and allow different facilities to conduct testing in a common manner. Solid electrolytes are expected to be commercially used for large scale batteries in the future. However, characterizing solid electrolytes may require methods different from those contained in this document. Such methods are not addressed in this document. It is not within the scope of this document to establish acceptance criteria for test results, as this is usually established between the vendor and customer. It is also not within the scope of this document to examine the electrochemical properties of an electrolyte, since these are influenced by electrolyte composition. In addition, establishing an electrolyte composition appropriate for all applications is not feasible.
Standard

Measuring Properties of Li-Battery Electrolyte

2015-02-03
HISTORICAL
J3042_201502
This SAE RP provides a set of test methods and practices for the characterization of the properties of Li-battery electrolyte. It is not within the scope of this document to establish criteria for the test results, as this is usually established between the vendor and customer.
Standard

Sintered Tool Materials

2017-12-20
CURRENT
J1072_201712
This SAE Recommended Practice covers the identification and classification of ceramic, sintered carbide, and other cermet tool products. Its purpose is to provide a standard method for designating the characteristics and properties of sintered tool materials.
Standard

Air Disc Brake Actuator Test Procedure, Truck-Tractor, Bus and Trailer

2020-12-07
CURRENT
J2902_202012
This SAE recommended practice provides procedures and methods for testing service, spring applied parking and combination brake actuators for air disc brake applications. Methods and recommended samples for testing durability, function and environmental performance are listed in 1.1 and 1.2.
Standard

Air Disc Brake Actuator Test Procedure, Truck-Tractor, Bus and Trailer

2014-10-01
HISTORICAL
J2902_201410
This SAE recommended practice provides procedures and methods for testing service, spring applied parking and combination brake actuators for air disc brake applications. Methods and recommended samples for testing durability, function and environmental performance are listed in 1.1 and 1.2.
Standard

Peel Adhesion Test for Glass to Elastomeric Material for Automotive Glass Encapsulation

2021-01-07
CURRENT
J1907_202101
This recommended practice defines a procedure for the construction and testing of a 180 deg peel specimen for the purpose of determining the bondability of glass to elastomeric material in automotive modular glass. This test method suggests that elastomeric material of less than 172 mpa modulus be used as the encapsulating material. The present practice of encapsulating automotive glass is described as molded-in-place elastomeric material onto the outer edge of the glass using thermoplastic or thermosetting material that quickly sets in the mold. The glass is removed from the mold with the cured elastomeric material bonded to the perimeter of the glass. This encapsulated glass module can now be bonded with a sealant adhesive into the body opening of a vehicle.
Standard

PEEL ADHESION TEST FOR GLASS TO ELASTOMERIC MATERIAL FOR AUTOMOTIVE GLASS ENCAPSULATION

1988-10-01
HISTORICAL
J1907_198810
This recommended practice defines a procedure for the construction and testing of a 180 deg peel specimen for the purpose of determining the bondability of glass to elastomeric material in automotive modular glass. This test method suggests that elastomeric material of less than 172 mpa modulus be used as the encapsulating material. The present practice of encapsulating automotive glass is described as molded-in-place elastomeric material onto the outer edge of the glass using thermoplastic or thermosetting material that quickly sets in the mold. The glass is removed from the mold with the cured elastomeric material bonded to the perimeter of the glass. This encapsulated glass module can now be bonded with a sealant adhesive into the body opening of a vehicle.
X