Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Design of ACHEON Thrust and Vector Propulsion System

2015-09-15
2015-01-2425
This paper focuses on the calculation methodology of the thrust of a ACHEON propulsion system, which is based on Coanda effect deflection of thrust. It defines a calculation methodology based on integral equations. The proposed methodology allows an effective calculation of the performances and the force applied on the airplane by such a propulsion system. It will also allow an effective design of the nozzle system and will implement also internal elements with an accurate definition of frictional losses. Outstanding results have been obtained together with general rules for implanting ACHEON propulsion inside an aircraft.
Technical Paper

Narrow-Band Excitation of Vortex Flows

2015-09-15
2015-01-2572
At high angles of attack, the flow over a swept wing generates counter-rotating vortical features. These features can amplify into a nearly sinusoidal fluctuation of velocity components. The result is excitation of twin-fin buffeting, driven at clearly predictable frequencies, or at nearby lock-in frequencies of the fin structure. This is distinct from the traditional model of fin buffeting as a structural resonant response to broadband, large-amplitude excitation from vortex core bursting. Hot-film anemometry was conducted ahead of the vertical fins of a 1:48 scale model of the F-35B aircraft, in the angle of attack range between 18 and 30 degrees. Auto spectral density functions from these data showed a sharp spectral peak in the flow ahead of the fins for angles of attack between 20 and 28 degrees. Small fences placed on the top surface of the wing eliminated the spectral peak, leaving only a broadband turbulent spectrum.
Technical Paper

How Tools and Process Improved Diagnostic and Prognostic Reaction Time

2015-09-15
2015-01-2589
Modern aircraft, such as A380 or A350 for Airbus, are very well connected in flight to ground stations through wireless communications. For maintenance and operations purpose, the aircraft is programmed to send regularly information such as flight reports based on the BITE messages (Built-In Test Equipment) or standard reports based on the value of physical parameters. Moreover, Airbus is capable of sending requests (called uplinks) to the aircraft to retrieve the value of different parameters in almost real-time. This ability, associated with adequate process, improves significantly the reaction time of the diagnostic and prognostic solutions that Airbus can provide to its customers. Traditionally Health Monitoring is considered useful when the Potential to Functional failure (P-F) interval is greater than one flight cycle.
Technical Paper

Using Time Domain Reflectometry to Measure Fluid Properties for IVHM Applications

2015-09-15
2015-01-2593
Time Domain Reflectometery (TDR) is a Radio Frequency (RF) technology that has been used for many years to find cable breaks and measure fluid levels in industrial processes. The technology uses picosecond length pulses and the associated reflections off the fluid surface in a time of flight measurement to determine fluid height. TDR signals have additional information that can be processed and utilized for Integrated Vehicle Health Management (IVHM) applications. For example, when water collects in the fuel tank, TDR is capable of identifying and measuring the amount of water. This can allow the water sumps to be drained on condition instead of on a schedule. In addition, electromagnetic properties of the fluid can be determined, such as the dielectric constant, which can be used to identify mis-fueling situations, contaminants in the fluid, and potentially other fluid health properties.
X