Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Artificial Lightning Tests on Metal and CFRP Automotive Bodies: A Comparative Study

2019-01-07
Abstract Carbon fiber reinforced plastic (CFRP) has been used in automobiles as well as airplanes. Because of its light weight and high strength, CFRP is a good choice for making vehicle bodies lighter, which would improve fuel economy. Conventional metal bodies provide a convenient body return for electric wiring and offer good shielding against electromagnetic fields. Although CFRP is a conductor, its conductivity is much lower than that of metals. Therefore, CFRP bodies are usually not useful for electric wiring. In thunderstorms, an automotive body is considered to be a Faraday cage that protects the vehicle’s occupants from the potential harms of lightning. Before CFRP becomes widely applied to automotive bodies, its electric and electromagnetic properties need to be investigated in order to determine whether it also works as a Faraday cage against lightning. In this article, CFRP and metal body vehicles were tested under artificial lightning.
Journal Article

Evaluation of the Energy Consumption of a Thermal Management System of a Plug-In Hybrid Electric Vehicle Using the Example of the Audi Q7 e-tron

2018-06-18
Abstract The transition of vehicle propulsion technologies away from conventional internal combustion engines toward more electrically dominant systems such as plug-in hybrid electric vehicles (PHEV) poses new challenges for vehicle thermal management systems. Especially at low ambient temperatures, consumer demand for cabin comfort as well as legislatively imposed safety considerations significantly reduce the electric driving range because only electric energy can be used for heating during emissions-free driving modes. Recent developments to find energy efficient thermal management systems for electric and plug-in electric vehicles have led to the implementation of automotive heat pump systems. As an alternative approach to meet dynamic heating demands and safety regulations, these systems use heat at a low temperature level, for example the waste heat of electric drivetrain components, to heat the passenger compartment efficiently and therefore increase the electric driving range.
Journal Article

Application of a New Method for Comparing the Overall Energy Consumption of Different Automotive Thermal Management Systems

2018-10-03
Abstract This article applies a new method for the evaluation and estimation of real-life energy consumption of two different thermal management systems based on driving behavior in the course of the day. Recent attempts to find energy-efficient thermal management systems for electric and plug-in hybrid electric vehicles have led to using secondary loop systems as an alternative approach for meeting dynamic heating and cooling demands and reducing refrigerant charge. However, the additional layer of thermal resistance, which influences the system’s transient behavior as well as passenger compartment comfort during cool-down or heat-up, makes it difficult to estimate the annual energy consumption. In this article, the overall energy consumption of a conventional and a secondary loop system is compared using a new method for describing actual customers’ driving behavior in the course of the day.
Journal Article

Development of a Standard Testing Method for Vehicle Cabin Air Quality Index

2019-05-20
Abstract Vehicle cabin air quality depends on various parameters such as number of passengers, fan speed, and vehicle speed. In addition to controlling the temperature inside the vehicle, HVAC control system has evolved to improve cabin air quality as well. However, there is no standard test method to ensure reliable and repeatable comparison among different cars. The current study defined Cabin Air Quality Index (CAQI) and proposed a test method to determine CAQI. CAQIparticles showed dependence on the choice of metrics among particle number (PN), particle surface area (PS), and particle mass (PM). CAQIparticles is less than 1 while CAQICO2 is larger than 1. The proposed test method is promising but needs further improvement for smaller coefficient of variations (COVs).
Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

2017-11-13
2016-32-0041
Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
Standard

Color Coding of Child Restraint Labels

2021-04-07
WIP
J3250
Define recommendations for color coding of child restraint labels, specifically focused on the information contained therein and whether it provides information for installation in a forward facing, rear facing, or booster mode.
Standard

Guidelines for Implementation of the Child Restraint Anchorage System or LATCH System in Motor Vehicles and Child Restraint Systems

2020-02-17
WIP
J2893
1. SCOPE These guidelines should be considered: When implementing the LATCH system in vehicle seating positions that will be designated by the vehicle owner’s manual and in the information included in the owners manual. When implementing the LATCH system in child restraint designs that include the LATCH system and in the information included in the instruction manual
Journal Article

The Effectiveness of Curtain Side Air Bags in Side Impact Crashes

2011-04-12
2011-01-0104
Accident data show that the head and the chest are the most frequently injured body regions in side impact fatal accidents. Curtain side air bag (CSA) and thorax side air bag (SAB) have been installed by manufacturers for the protection devices for these injuries. In this research, first we studied the recent side impact accident data in Japan and verified that the head and chest continued to be the most frequently injured body regions in fatal accidents. Second, we studied the occupant seating postures in vehicles on the roads, and found from the vehicle's side view that the head location of 56% of the drivers was in line or overlapped with the vehicle's B-pillar. This observation suggests that in side collisions head injuries may occur frequently due to contacts with the B-pillar. Third, we conducted a side impact test series for struck vehicles with and without CSA and SAB.
Journal Article

Practical Approach to Develop Low Cost, Energy Efficient Cabin Heating for Extreme Cold Operating Environment

2011-04-12
2011-01-0132
In cold climatic regions (25°C below zero) thermal comfort inside vehicle cabin plays a vital role for safety of driver and crew members. This comfortable and safe environment can be achieved either by utilizing available heat of engine coolant in conjunction with optimized in cab air circulation or by deploying more costly options such as auxiliary heaters, e.g., Fuel Fired, Positive Temperature Coefficient heaters. The typical vehicle cabin heating system effectiveness depends on optimized warm/hot air discharge through instrument panel and foot vents, air directivity to occupant's chest and foot zones and overall air flow distribution inside the vehicle cabin. On engine side it depends on engine coolant warm up and flow rate, coolant pipe routing, coolant leakage through engine thermostat and heater core construction and capacity.
Journal Article

Assessment of Various Environmental Thermal Loads on Passenger Thermal Comfort

2010-04-12
2010-01-1205
Virtual simulation of passenger compartment climatic conditions is becoming increasingly important as a complement to the wind tunnel and field testing to achieve improved thermal comfort while reducing the vehicle development time and cost. The vehicle cabin is subjected to various thermal environments. At the same time many of the design parameters are dependent on each other and the relationship among them is quite complex. Therefore, an experimental parametric study is very time consuming. The present 3-D RadTherm analysis coupled with the 3-D CFD flow field analysis takes into account the geometrical configuration of the passenger compartment which includes glazing surfaces and pertinent physical and thermal properties of the enclosure with particular emphasis on the glass properties. Virtual Thermal Comfort Engineering (VTCE) is a process that takes into account the cabin thermal environment coupled with a human physiology model.
Journal Article

Effect of Gaseous Hydrocarbon-Silicon and Load Current on Contact Resistance of Electromagnetic Relays

2010-04-12
2010-01-0204
Automobile engine compartments are exposed to much wider temperature and moisture-level changes than passenger compartments. Therefore, for electrical components housed in the engine compartment, protection of printed circuit boards is extremely important in order to prevent open or short circuits caused by electrochemical reactions. It is well known that silicon oxide accumulates on electromagnetic relay contacts, and may cause degraded circuits once volatile low-mass cyclic polydimetylsiloxane from a commonly used silicone gel waterproofing material reacts in a direct-current arc that occurs when the contacts open and close. Material selection for relay modules is critical in order to avoid this phenomenon. We used a gel material jointly developed with a supplier, and evaluated its reliability compared to silicone in terms of relay operation. This material is a polymer resin that consists of poly(n-butyl acrylate) as the main component, linked through silicon.
Journal Article

FPGA-Based Development for Sophisticated Automotive Embedded Safety Critical System

2014-04-01
2014-01-0240
As software (SW) becomes more and more an important aspect of embedded system development, project schedules are requiring the earlier development of software simultaneously with hardware (HW). In addition, verification has increasingly challenged the design of complex mixed-signal SoC products. This is exacerbated for automotive safety critical SoC products with a high number of analogue interfaces (sensors and actuators) to the physical components such as an airbag SoC chipset. Generally, it is widely accepted that verification accounts for around 70% of the total SoC development. Since integration of HW and SW is the most crucial step in embedded system development, the sooner it is done, the sooner verification can begin. As such, any approaches which could allow verification and integration of HW/SW to be deployed earlier in the development process and help to decrease verification effort, (e.g.: accelerate verification runs) are of extreme interest.
Journal Article

Integrated Solutions for Noise and Vibration Control in Vehicles

2014-06-30
2014-01-2048
The automotive industry is aiming at both reducing the weight of the vehicles while improving a high level of comfort. This causes contradicting requirements for the systems used for noise and vibration control. Thus, active systems are investigated which may enhance the performance of passive noise and vibration control in vehicles without adding excessive weight. In this paper, basic principles for the implementations of those systems with a focus on the control systems are reviewed. Examples from implementations in automotive applications are presented, including control of engine vibrations, structure borne noise transmitted from the road into the passenger compartment and low-frequency chassis vibrations. Based on adaptive filter systems already widely used in active noise control adaptation of the control algorithms to the specific application scenarios are discussed.
Journal Article

Composite Thermal Model for Design of Climate Control System

2014-04-01
2014-01-0687
We propose a composite thermal model of the vehicle passenger compartment that can be used to predict and analyze thermal comfort of the occupants of a vehicle. Physical model is developed using heat flow in and out of the passenger compartment space, comprised of glasses, roof, seats, dashboard, etc. Use of a model under a wide variety of test conditions have shown high sensitivity of compartment air temperature to changes in the outside air temperature, solar heat load, temperature and mass flow of duct outlet air from the climate control system of a vehicle. Use of this model has subsequently reduced empiricism and extensive experimental tests for design and tuning of the automatic climate control system. Simulation of the model allowed several changes to the designs well before the prototype hardware is available.
Journal Article

Evaluation of Ground Vehicle Wind Noise Transmission through Glasses Using Statistical Energy Analysis

2013-05-13
2013-01-1930
The contribution of wind noise through the glasses into the vehicle cabin is a large source of customer concern. The wind noise sources generated by turbulent flow incident on the vehicle surfaces and the transmission mechanisms by which the noise is transmitted to the interior of the vehicle are complex and difficult to predict using conventional analysis techniques including Computational Fluid Dynamics (CFD) and acoustic analyses are complicated by the large differences between turbulent pressures and acoustic pressures. Testing in dedicated acoustic wind tunnel (AWT) facilities is often performed to evaluate the contribution of wind noise to the vehicle interior noise in the absence of any other noise sources. However, this testing is time-consuming and expensive and test hardware for the vehicle being developed is often not yet available at early stages of vehicle design.
Journal Article

Study on the Vehicle Cabin Noise Employing the Interfacial Friction in Double Layered Frames Used in Electric Vehicle Traction Motors

2013-10-14
2013-01-2590
Electric vehicles are considered not only eco-friendly but also quieter than vehicles with conventional internal combustion engines. However, less noisy environments in cabins make passengers feel uncomfortable to moderate noise. This paper discusses noise reduction for electric vehicles radiated from traction motors. In the analysis of the noise generation mechanisms it is demonstrated that frequency ranges of the highest level in the noise spectrum of electromagnetic harmonic orders of the induction motor coincide with structural resonances of the motor housing. Interfacial friction between the inner and outer housings of the motor is employed in reducing structural vibration of the motor. Measured noise in the cabin and vibration at the motor housing indicates that slip damping presented from interfacial friction between the inner and outer housing is effective in reducing noise from the traction motor and in the cabin.
Journal Article

Fast and Efficient Detection of Shading of the Objects

2015-04-14
2015-01-0371
The human thermal comfort, which has been a subject of extensive research, is a principal objective of the automotive climate control system. Applying the results of research studies to the practical problems require quantitative information of the thermal environment in the passenger compartment of a vehicle. The exposure to solar radiation is known to alter the thermal environment in the passenger compartment. A photovoltaic-cell based sensor is commonly used in the automotive climate control system to measure the solar radiation exposure of the passenger compartment of a vehicle. The erroneous information from a sensor however can cause thermal discomfort to the occupants. The erroneous measurement can be due to physical or environmental parameters. Shading of a solar sensor due to the opaque vehicle body elements is one such environmental parameter that is known to give incorrect measurement.
Technical Paper

3D Simulation Methodology to Predict Passenger Thermal Comfort Inside a Cabin

2021-09-15
2021-28-0132
The vehicle Heating, Ventilation and Air conditioning (HVAC) system is designed to meet both the safety and thermal comfort requirements of the passengers inside the cabin. The thermal comfort requirement, however, is highly subjective and is usually met objectively by carrying out time dependent mapping of parameters like the velocity and temperature at various in-cabin locations. These target parameters are simulated for the vehicle interior for a case of hot soaking and its subsequent cool-down to test the efficacy of the AC system. Typically, AC performance is judged by air temperature at passenger locations, thermal comfort estimation along with time to reach comfortable condition for human. Simulating long transient vehicle cabin for thermal comfort evaluation is computationally expensive and involves complex cabin material modelling.
Technical Paper

Method of Improvement of Air Flow Uniformity to Reduce the Evaporator Frosting of a Passenger Car

2021-09-15
2021-28-0148
For an efficient automotive AC system it is very essential to ensure uninterrupted and consistent airflow and temperature at the vent exit to help achieve the comfortable cabin space. This certainly requires temperature sensor to position at lowest possible temperature on heat exchanger and uniform flow distribution over it. However the uneven distribution of airflow on evaporator entry face leads to lowest temperature and sometimes goes undetected. This causes the condensate to get freezed and then frosting occurs at the core surface. Eventually a substantial portion of evaporator face gets choked and gradually airflow reduces and evaporator exit air temperature shoots up. Hence it is very important to prevent the frosting on evaporator core so to have uninterrupted airflow and adequate cooling in the passenger compartment. The present paper investigates the reasons for frosting occurring in one of the hatchback vehicle in bench test.
Technical Paper

Attaining Thermal Comfort by Utilizing Polymer Dispersed Liquid Crystal Embedded Wind Shield and Roof of a Passenger Car

2021-09-15
2021-28-0151
Despite the advances in the field of vehicle thermal management, certain challenges still exists which are yet necessary to be addressed. One of among those challenges is maintaining the vehicle cabin temperature at a comfortable level and reducing the losses incurred by the vehicle. Vehicle cabin temperature is an important factor in deciding the reliability, longevity and fuel economy of a vehicle. Also, for the safety and comfort of the driver and passengers, the comfort conditions are to be maintained in all climatic conditions. The cabin temperature is increased due to thermal soaking from direct sunlight and this increases the vehicle cabin temperature up to a range of 50 0C to 70 0C. The amount of solar radiation entering into the vehicle cabin is a major factor which is a contribution of transmissivity of light radiation through the windows including the windshield.
X