Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Finding All Potential Run-Time Errors and Data Races in Automotive Software

2017-03-28
2017-01-0054
Safety-critical embedded software has to satisfy stringent quality requirements. All contemporary safety standards require evidence that no data races and no critical run-time errors occur, such as invalid pointer accesses, buffer overflows, or arithmetic overflows. Such errors can cause software crashes, invalidate separation mechanisms in mixed-criticality software, and are a frequent cause of errors in concurrent and multi-core applications. The static analyzer Astrée has been extended to soundly and automatically analyze concurrent software. This novel extension employs a scalable abstraction which covers all possible thread interleavings, and reports all potential run-time errors, data races, deadlocks, and lock/unlock problems. When the analyzer does not report any alarm, the program is proven free from those classes of errors. Dedicated support for ARINC 653 and OSEK/AUTOSAR enables a fully automatic OS-aware analysis.
Technical Paper

Automatic Sound Static Analysis for Integration Verification of AUTOSAR Software

2023-04-11
2023-01-0591
Preventing systematic software failures is of paramount importance for any highly automatic vehicle control system, in particular for safety-critical AUTOSAR software. Among the most critical software defects are runtime errors like buffer overflows or data races. They may cause erroneous or erratic behavior, induce system failures, and constitute security vulnerabilities. Sound static analysis can be used to report all such defects in the code, or to prove their absence. It can also determine dependencies between software components and show freedom of interference without missing any data and control flow through data or function pointers. In the past, AUTOSAR projects often had to be decomposed or simplified to achieve satisfactory analysis time or memory consumption. Creating the analysis model, i.e., determining the tasks and ISRs to analyze, their priorities, synchronization, etc., required significant manual effort.
Technical Paper

Analyze This! Sound Static Analysis for Integration Verification of Large-Scale Automotive Software

2019-04-02
2019-01-1246
Safety-critical embedded software has to satisfy stringent quality requirements. One such requirement, imposed by all contemporary safety standards, is that no critical run-time errors must occur. Runtime errors can be caused by undefined or unspecified behavior of the programming language; examples are buffer overflows or data races. They may cause erroneous or erratic behavior, induce system failures, and constitute security vulnerabilities. A sound static analyzer reports all such defects in the code, or proves their absence. Sound static program analysis is a verification technique recommended by ISO/FDIS 26262 for software unit verification and for the verification of software integration. In this article we propose an analysis methodology that has been implemented with the static analyzer Astrée. It supports quick turn-around times and gives highly precise whole-program results.
Technical Paper

Static Memory and Execution Time Analysis of Embedded Code

2006-04-03
2006-01-1499
Failure of a safety-critical application on an embedded processor can lead to severe damage or even loss of life. Here we are concerned with two kinds of failure: stack overflow, which usually leads to run-time errors that are difficult to diagnose, and failure to meet deadlines, which is catastrophical for systems with hard real-time characteristics. Classical validation methods like code review and testing with repeated measurements require a lot of effort, are expensive, and do not really help in proving the absence of such errors. AbsInt's tools StackAnalyzer and aiT (timing analyzer) provide a solution to this problem. They use abstract interpretation as a formal method that allows to obtain statements valid for all program runs with all inputs.
X