Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Introduction of New Concept U*sum for Evaluation of Weight-Efficient Structure

2011-11-01
A new index for evaluating load path dispersion is proposed, using a structural load path analysis method based on the concept of U* , which expresses the connection strength between a load point and an arbitrary point within the structure enables the evaluation of the load path dispersion within the structure by statistical means such as histograms and standard deviations. Presenter Tadashi Naito, Honda R&D Co., Ltd.
Collection

Power Systems - Modeling, Simulation, Analysis & Control, 2012

2012-10-30
The 19 Technical Papers in this collection address modeling, simulation, analysis, and control (MSA&C) of components, subsystems, and systems pertinent to aerospace power. This includes: tools and techniques, platforms, Mission and Campaign level MSA&C, and Verification and Validation of MSA&C.
Collection

Fatigue Modeling/Testing & CAE Durability Analysis, 2015

2015-04-14
This collection of technical papers focuses on state-of-the-art fatigue theory and advanced development in fatigue testing, material behavior under cyclic loading, and fatigue analysis methodology & research in the ground vehicle industry.
Collection

Advanced Analysis, Design, and Optimization for Materials, Restraints, and Structures for Enhanced Automotive Safety and Weight Reduction, 2017

2017-03-28
Papers with an emphasis on, but not limited to, innovative ideas to enhance automotive safety with improved material constitutive modeling, analysis method developments, simulation and pre/post processing tools, optimization techniques, crash code developments, finite element model updating, model validation and verification techniques, dummies and occupants, restraint systems, passive safety as well as lightweight material applications and designs are included in the collection.
Collection

Business Modeling / Operation Research / Big Data Analytics, 2017

2017-03-28
Business Modeling/Operation Research/Big Data Analytics are key enablers for the next wave of innovation and growth across most industries and will address complex issues and systems that involve multiple objectives, alternatives, trade-offs, and large amounts of data and situations involving uncertainty or risk. These papers address new technical advances in these areas and provide valuable insights through the applications of real-world case studies.
Collection

Advanced Analysis, Design, and Optimization for Materials, Restraints, and Structures for Enhanced Automotive Safety and Weight Reduction, 2018

2018-04-03
Papers with an emphasis on, but not limited to, innovative ideas to enhance automotive safety with improved material constitutive modeling, analysis method developments, simulation and pre/post processing tools, optimization techniques, crash code developments, finite element model updating, model validation and verification techniques, dummies and occupants, restraint systems, passive safety as well as lightweight material applications and designs are included in the collection.
Collection

Commercial Vehicle Dynamics Modeling, Simulation and Validation Studies, 2015

2015-09-29
This technical paper collection discusses the modeling, analysis, and validation of commercial vehicle chassis, suspension, and tire modeling and simulation. Topics include commercial vehicle dynamics; chassis control devices such as ABS, traction control, yaw/roll stability control, and their interaction with suspension controls; modeling and simulation of ride comfort, as well as passive and active suspension control methodologies. Authors are encouraged to discuss the validation of their modeling and simulation.
Journal Article

Analysis of Driving Performance Based on Driver Experience and Vehicle Familiarity: A UTDrive/Mobile-UTDrive App Study

2019-11-21
Abstract A number of studies have shown that driving an unfamiliar vehicle has the potential to introduce additional risk, especially for novice drivers. However, such studies have generally used statistical methods based on analyzing crash and near-crash data from a range of driver groups, and therefore the evaluation has the potential to be subjective and limited. For a more objective perspective, this study suggests that it would be worthwhile to consider vehicle dynamic signals obtained from the Controller Area Network (CAN-Bus) and smartphones. This study, therefore, is focused on the effect of driver experience and vehicle familiarity for issues in driver modeling and distraction. Here, a group of 20 drivers participated in our experiment, with 13 of them having participated again after a one-year time lapse in order for analysis of their change in driving performance.
Journal Article

Driving Simulator Performance in Charcot-Marie-Tooth Disease Type 1A

2019-05-10
Abstract Introduction: This study evaluates driving ability in those with Charcot Marie Tooth Disease Type 1A, a hereditary peripheral neuropathy. Methods: Individuals with Charcot Marie Tooth Disease Type 1A (n = 18, age = 42 ± 7) and controls (n = 19; age = 35 ± 10) were evaluated in a driving simulator. The Charcot Marie Tooth Neuropathy Score version 2 was obtained for individuals. Rank Sum test and Spearman rank correlations were used for statistical analysis. Results: A 74% higher rate of lane departures and an 89% higher rate of lane deviations were seen in those with Charcot Marie Tooth Disease Type 1A than for controls (p = 0.005 and p < 0.001, respectively). Lane control variability was 10% higher for the individual group and correlated with the neuropathy score (rS = 0.518, p = 0.040), specifically sensory loss (rS = 0.710, p = 0.002) and pinprick sensation loss in the leg (rS = 0.490, p = 0.054).
Journal Article

Fuzzy Control of Autonomous Intelligent Vehicles for Collision Avoidance Using Integrated Dynamics

2018-03-01
Abstract This study aims to take the first step in bridging the gap between vehicle dynamics systems and autonomous control strategies research. More specifically, a nested method is employed to evaluate the collision avoidance ability of autonomous vehicles in the primary design stage theoretically based on both dynamics and control parameters. An integrated model is derived from a half car mathematical model in the lateral direction, consisting of two degrees of freedom, lateral deviation and yaw angle, with a traction mathematical model in the longitudinal direction, consisting of two degrees of freedom, the longitudinal velocity and rolling velocity of the wheel. The integrated model uses a mathematical power train model to generate the torque on the wheel and connects the two systems via the magic formula tyre model to represent the tyre non-linearity during augmented longitudinal and lateral dynamic attitudes.
Journal Article

Design, Analysis, Simulation and Validation of Automobile Suspension System Using Drive-Shaft as a Suspension Link

2018-04-18
Abstract With increasing demands for higher performance along with lower vehicle emissions, lightweight vehicle system construction is key to meet such demands. Suspension and transmission assemblies being the key areas for weight-reduction, we have designed a revolutionary new type of suspension system which combines the suspension links with the powertrain assembly and thus completely eliminates one suspension member. Less weight means lower fuel-consumption with improved passenger-comfort and road-holding due to reduction in unsprung mass. Elimination of a suspension link reduces the overall cost of material, machining & fabrication making our design cost-effective than existing setups. This paper deals with the design and implementation of of our concept. A working prototype is also constructed and tested which completely validates our design.
Journal Article

Thermo-Mechanical Coupled Analysis-Based Design of Ventilated Brake Disc Using Genetic Algorithm and Particle Swarm Optimization

2021-08-24
Abstract The brake discs are subjected to thermal load due to sliding by the brake pad and fluctuating loads because of the braking load. This combined loading problem requires simulation using coupled thermo-mechanical analysis for design evaluation. This work presents a combined thermal and mechanical finite element analysis (FEA) and evolutionary optimization-based novel approach for estimating the optimal design parameters of the ventilated brake disc. Five parameters controlling the design: inboard plate thickness, outboard plate thickness, vane height, effective offset, and center hole radius were considered, and simulation runs were planned. A total of 27 brake disc designs with design parameters as recommended by the Taguchi method (L27) were modeled using SolidWorks, and the FEA simulation runs were carried out using the ANSYS thermal and structural analysis tool.
Journal Article

Effect of Spoke Design and Material Nonlinearity on Non-Pneumatic Tire Stiffness and Durability Performance

2021-08-06
Abstract The non-pneumatic tire (NPT) has been widely used due to its advantages of no run-flat, no need for air maintenance, low rolling resistance, and improvement of passenger comfort due to its better shock absorption. It has a variety of applications in military vehicles, earthmovers, the lunar rover, stair-climbing vehicles, etc. Recently, the Unique Puncture-Proof Tire System (UPTIS) NPT has been introduced for passenger vehicles. In this study, three different design configurations, viz., Tweel, Honeycomb, and newly developed UPTIS, have been compared. The effect of polyurethane (PU) material nonlinearity has also been introduced by applying five different nonlinear PU material properties in the spokes. The combined analysis of the PU material nonlinearity and spoke design configuration on the overall tire stiffness and spoke damage prediction is done using three-dimensional (3D) finite element modelling (FEM) simulations performed in ANSYS 16.0.
Journal Article

Application of a New Method for Comparing the Overall Energy Consumption of Different Automotive Thermal Management Systems

2018-10-03
Abstract This article applies a new method for the evaluation and estimation of real-life energy consumption of two different thermal management systems based on driving behavior in the course of the day. Recent attempts to find energy-efficient thermal management systems for electric and plug-in hybrid electric vehicles have led to using secondary loop systems as an alternative approach for meeting dynamic heating and cooling demands and reducing refrigerant charge. However, the additional layer of thermal resistance, which influences the system’s transient behavior as well as passenger compartment comfort during cool-down or heat-up, makes it difficult to estimate the annual energy consumption. In this article, the overall energy consumption of a conventional and a secondary loop system is compared using a new method for describing actual customers’ driving behavior in the course of the day.
Journal Article

A Predictive Tool to Evaluate Braking System Performance Using Thermo-Structural Finite Element Model

2019-10-14
Abstract The braking phenomenon is an aspect of vehicle stopping performance where with kinetic energy due to the speed of the vehicle is transformed into thermal energy produced by the brake disc and its pads. The heat must then be dissipated into the surrounding structure and into the airflow around the brake system. The thermal friction field during the braking phase between the disc and the brake pads can lead to excessive temperatures. In our work, we presented numerical modeling using ANSYS software adapted in the finite element method (FEM), to follow the evolution of the global temperatures for the two types of brake discs, full and ventilated disc during braking scenario. Also, numerical simulation of the transient thermal analysis and the static structural analysis were performed here sequentially, with coupled thermo-structural method.
Journal Article

Influence of Intelligent Active Suspension System Controller Design Techniques on Vehicle Braking Characteristics

2018-12-04
Abstract This article presents a comprehensive investigation for the interaction between vehicle ride vibration control and braking control using two degrees of freedom (2DOF) quarter vehicle model. A typical limited bandwidth active suspension system with nonlinear spring and damping characteristics of practical hydraulic and pneumatic components is controlled to regulate both suspension and tire forces and therefore provide the optimum ride comfort and braking performance of an anti-lock brake system (ABS). In order to design a suitable controller for this nonlinear integrated system, various control techniques are followed including state feedback tuned using Linear Quadratic Regulator (LQR), state feedback tuned using Genetic Algorithm (GA), Proportional Integrated (PI) tuned genetically, and Fuzzy Logic Control (FLC). The ABS control system is designed to limit skid ratio below threshold of 15%.
Journal Article

Disc Pad Physical Properties vs. Porosity: The Question of Compressibility as an Intrinsic Physical Property

2017-09-17
Abstract Disc pad physical properties are believed to be important in controlling brake friction, wear and squeal. Thus these properties are carefully measured during and after manufacturing for quality assurance. For a given formulation, disc pad porosity is reported to affect friction, wear and squeal. This investigation was undertaken to find out how porosity changes affect pad natural frequencies, dynamic modulus, hardness and compressibility for a low-copper formulation and a copper-free formulation, both without underlayer, without scorching and without noise shims. Pad natural frequencies, modulus and hardness all continuously decrease with increasing porosity. When pad compressibility is measured by compressing several times as recommended and practiced, the pad surface hardness is found to increase while pad natural frequencies and modulus remain essentially unchanged.
Journal Article

Correlation Model of Subjective and Objective Evaluation Based on Grey GM(0,N) for Automobile Sound Quality

2018-04-18
Abstract Correlation analysis of subjective and objective evaluation for automobile sound quality is an important topic in automobile technology fields. In view of the deficiency of multi-dimensional linear regression analysis and the theoretical merits of grey system method, grey comprehensive relational degree was calculated to analyze the contribution of objective evaluation data to subjective evaluation. The main objective variables affecting the subjective feeling were determined. The variables include loudness, sharpness and shaking degrees. Grey GM(0,4) model was established as a quantitative expression for describing the subjective and objective evaluation correlation. The results of residual test and posterior-variance-test show that the established model was accurate and the model can be used to analyze and predict subjective and objective evaluation data of automobile sound quality.
Journal Article

Recent Development in Friction Stir Welding Process: A Review

2020-09-09
Abstract The Friction stir welding (FSW) is recently presented so to join different materials without the melting process as a solid-state joining technique. A widely application for the FSW process is recently developed in automotive industries. To create the welded components by using the FSW, the plunged probe and shoulder as welding tools are used. The Finite Element Method (FEM) can be used so to simulate and analyze material flow during the FSW process. As a result, thermal and mechanical stresses on the workpiece and welding tool can be analyzed and decreased. Effects of the welding process parameters such as tool rotational speed, welding speed, tool tilt angle, depth of the welding tool, and tool shoulder diameter can be analyzed and optimized so to increase the efficiency of the production process. Material characteristics of welded parts such as hardness or grain size can be analyzed so to increase the quality of part production.
Journal Article

The Effect of Current Mode on the Crack and Failure in the Resistance Spot Welding of the Advanced High-Strength DP590 Steel

2020-09-09
Abstract The causes of failure due to cracking in the resistance spot welding of the advanced high-strength steels dual-phase 590 (DP590) were investigated using scanning electron microscopy (SEM), optical microscopy, and the tensile-shear test. The results showed that by increasing the current amount, the formation of the melting zone occurred in the heat-affected zone, leading to the cracking in this area, reducing the tensile strength and decreasing the mechanical properties; the initiation and growth of cracking and failure in this region also happened. In the heat-affected zone, by increasing the current amount with the softening phenomenon, the recrystallized coarse grains also occurred, eventually resulting in the loss of mechanical properties. The results of the tensile-shear test also indicated that by increasing the current up to 12 kA, the strength was raised, but the ductility was reduced.
X