Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

Analysis of Port Injected Fuel Spray Under Cross Wind Using 2-D Measurement Techniques

2010-09-28
2010-32-0064
In a motorcycle gasoline engine, the port fuel injection system is rapidly spread. Compared to an automotive engine, the injected fuel does not impinge on the intake valve due to space restriction to install the injector. In addition, as the air flow inside the intake pipe may become very fast and has large cycle-to-cycle variation, it is not well found how the injector should be installed in the intake pipe to prepare “good” fuel-air mixture inside the intake pipe. In this study, the formation process of the fuel-air mixture is measured by using ILIDS system that is a 2-D droplets' size and velocity measurement system with high spatial resolution. Experiments with changing conditions such as flow speed and injection direction are carried out. As a result, the effects of injection direction, ambient flow speed and wall roughness on the fuel-air mixture formation process was examined, considering the three conditions of cold start, light to medium load operation and high load operation.
Technical Paper

3D-CFD Full Engine Simulation Application for Post-Oxidation Description

2021-09-05
2021-24-0016
The introduction of real driving emissions cycles and increasingly restrictive emissions regulations force the automotive industry to develop new and more efficient solutions for emission reductions. In particular, the cold start and catalyst heating conditions are crucial for modern cars because is when most of the emissions are produced. One interesting strategy to reduce the time required for catalyst heating is post-oxidation. It consists in operating the engine with a rich in-cylinder mixture and completing the oxidation of fuel inside the exhaust manifold. The result is an increase in temperature and enthalpy of the gases in the exhaust, therefore heating the three-way-catalyst. The following investigation focuses on the implementation of post-oxidation by means of scavenging in a four-cylinder, turbocharged, direct injection spark ignition engine. The investigation is based on detailed measurements that are carried out at the test-bench.
Technical Paper

Evaluation of a Concept for DI Gasoline Combustion Using Enhanced Gas Motion

1998-02-23
980152
A direct injection gasoline engine system which employs a unique combustion system with enhanced gas motion is evaluated. Enhanced gas motion is produced by employing both a moderately strong swirl flow and a cavity in the piston. Advantages of this system are that the injection timing or spark timing need not be controlled severely and that since the injection timing can be set at near the intake BDC, time for evaporation can be gained to reduce soot emissions. Problems to be improved are that the Nox emissions level is worse than other lean burn systems and full load operation is not evaluated. According to the numerical calculations, the problems may be solved by enhancing the in-cylinder gas motion with axial stratification of swirl intensity at intake BDC; strong swirl near the cylinder head and weak swirl near the piston surface.
Technical Paper

Investigation of Breakup Modeling of a Diesel Spray by Making Comparisons with 2D Measurement Data

2007-07-23
2007-01-1898
In this study, the characteristics of diesel spray droplets, such as the velocity and the diameter were simultaneously measured by using an improved ILIDS (Interferometric Laser Imaging for Droplet Sizing) method on a 2D plane to evaluate the droplet breakup modeling. In numerical analysis, DDM (Discrete Droplet Model) was employed with sub-models such as droplet breakup, droplet drag force and turbulence. Experiments have been performed with an accumulator type unit-injector system and a constant-volume high-pressure vessel under the condition of quiescent ambient gas. The injection pressure and ambient gas pressure were set up to 100 MPa and 0.1 / 1 MPa, respectively. The nozzle orifice diameter was 0.244 mm with a single hole. The measurement region was chosen at 40 ∼ 60 mm from the nozzle-tip. Numerical analysis of diesel sprays was conducted and the results were compared to the measured results.
Technical Paper

Quantitative 2-D Gas Concentration Measurement by Laser-Beam Scanning Technique with Combination of Absorption and Fluorescense

2003-10-27
2003-01-3153
In order to measure the spatial distribution of fuel jet concentration quantitatively, a technique combining methods of fluorescence with absorption was developed. LIF method can obtain the spatial fuel distribution qualitatively, but quantitative measurement is difficult. Meanwhile, laser-beam absorption method can quantitatively obtain the integrated jet concentration on the light-path. In addition, scanning the laser-beam allows for a quasi 2-D quantitative measurement of the jet concentration. Firstly, in this study, this measurement system was tested in a homogeneously charged field while varying the dopant NO2 concentration, the laser-beam scanning speed, and the ambient pressure. As a result, some data-correction techniques were developed to produce a quantitative measurement. Secondly, this system was applied to gaseous jet fields in a constant volume bomb.
Technical Paper

Numerical Analysis of Mixture Preparation in a Reverse Uniflow-Type Two-Stroke Gasoline DI Engine

2001-12-01
2001-01-1815
The authors have been engaged in developing a new-generation two-stroke gasoline engine which could be employed ultimately for automobiles. By investigating the defects of the Schnurle-type two-stroke gasoline engine, a reverse uniflow-type direct injection engine has been developed and built. The newly introduced system employs stratified charge combustion in light to medium load conditions by using the technology already developed for the four-stroke direct injection gasoline engines while it can supply the maximum power output by using a super-charger and attaining homogeneous combustion. Engine performance is being tested experimentally. In order to analyze the performance test results, numerical analysis of in-cylinder phenomena, such as gas-exchange, gas motion, fuel spray formation, and mixture formation is carried out in this paper.
Technical Paper

Measurement of the Local Gas Temperature at Autoignition Conditions Inside the Combustion Chamber Using a Two-Wire Thermocouple

2006-04-03
2006-01-1344
The phenomenon of autoignition is an important aspect of HCCI and knock, hence reliable information on local gas temperature in a combustion chamber must be obtained. Recently, several studies have been conducted by using laser techniques such as CARS. It has a high spatial resolution, but has proven difficult to apply in the vicinity of combustion chamber wall and requires special measurement skills. Meanwhile, a thermocouple is useful to measure local gas temperature even in the vicinity of wall. However, a traditional one-wire thermocouple is not adaptable to measure the in-cylinder gas temperature due to slow response. The issue of response can be overcome by adopting a two-wire thermocouple. The two-wire thermocouple is consisted of two fine wire thermocouples with different diameter hence it is possible to determine the time constant using the raw data from each thermocouple.
Technical Paper

Proposition of a Stratified Charge System by Using In-Cylinder Gas Motion

1995-10-01
952455
A new idea for controlling the in-cylinder mixture formation in SI engines is proposed. This concept was developed by applying the results of numerical calculations. Fuel that is directly injected into the cylinder is transferred toward the cylinder head to form a mixture stratification by using the in-cylinder gas motion that is generated by the interaction between the swirl and squish flows inside a combustion chamber. At first, the flow characteristics were measured in the whole in-cylinder space using an LDV system. Also, numerical calculations of the in-cylinder flow were made using measured data as the initial conditions. Secondly, the local equivalence ratio at several points inside the combustion chamber was measured by using a fast gas sampling device.
Technical Paper

Improvement of Post-Oxidation for Low-Emission Engines through 3D-CFD Virtual Development

2023-08-28
2023-24-0107
There is a growing need for low-emissions concepts due to stricter emission regulations, more stringent homologation cycles, and the possibility of a ban on new engines by 2035. Of particular concern are the conditions during a cold start, when the Three-Way Catalyst is not yet heated to its light-off temperature. During this period, the catalyst remains inactive, thereby failing to convert pollutants. Reducing the time needed to reach this temperature is crucial to comply with the more stringent emissions standards. The post oxidation by means of secondary air injection, illustrated in this work, is a possible solution to reduce the time needed to reach the above-mentioned temperature. The strategy consists of injecting air into the exhaust manifold via secondary air injectors to oxidize unburned fuel that comes from a rich combustion within the cylinder.
Technical Paper

Measurement of Liquid Fuel Film Attached to the Wall in a Port Fueled SI Gasoline Engine

2023-10-24
2023-01-1818
Liquid fuel attached to the wall surface of the intake port, the piston and the combustion chamber is one of the main causes of the unburned hydrocarbon emissions from a port fueled SI engine, especially during transient operations. To investigate the liquid fuel film formation process and fuel film behavior during transient operation is essential to reduce exhaust emissions in real driving operations, including cold start operations. Optical techniques have been often applied to measure the fuel film in conventional reports, however, it is difficult to apply those previous techniques to actual engines during transient operations. In this study, using MEMS technique, a novel capacitance sensor has been developed to detect liquid fuel film formation and evaporation processes in actual engines. A resistance temperature detector (RTD) was also constructed on the MEMS sensor with the capacitance sensor to measure the sensor surface temperature.
Technical Paper

Analysis of Mixture Formation Process in a Reverse Uniflow-Type Two-Stroke Gasoline DI Engine

2002-10-29
2002-32-1774
A reverse uniflow-type two-stroke gasoline direct injection engine, which has potentials of high power weight ratio, high thermal efficiency and low exhaust gas emissions, has been developed and tested. In this study, one of the features of this engine: very low cycle-to-cycle combustion variation at idling condition, is focused to clarify the reasons. To achieve this, a transparent cylinder model engine was designed and built to visualize the in-cylinder mixture formation process, and the free spray characteristics of a swirl-type injector were examined using a large chamber with changing the injection pressure, environmental gas pressure, and the gas temperature. As a result, the reasons of stable idling operation were deduced.
Technical Paper

Application of Porous Material as Heat Storage Medium to a Turbocharged Gasoline Engine

2020-01-24
2019-32-0541
Porous materials, which have large surface areas, have been used for heat storage. However, porous Si-SiC material, as heat storage medium to be applied to a turbocharged gasoline engine has not been investigated extensively. In this study, porous Si-SiC material was used in the upstream of the turbine as heat storage medium and a model was thereby developed for further study. Substrate surface area and substrate volume of Si-SiC were calculated for structure model calibration. Following these calculations and test results, the pressure loss and thermal model were validated. Results show that the weaken exhaust gas pulsation amplitude by porous Si-SiC leads to better turbine performance and BSFC in steady engine condition for a turbocharged gasoline engine. In addition, its transient operation response needs to be improved under transient engine conditions. Hence the possibility of improving the transient response is investigated with characteristics of porous Si-SiC material.
Technical Paper

Performance Investigation of a PFI Gasoline Engine by Applying Various Kinds of Fuel Injectors

2020-01-24
2019-32-0546
In this report, the effect of injection specification, such as droplet size, lengths of nozzle tip and spray angle, on the engine performance was investigated using a 1.2 L port fuel injection (PFI) four-cylinder gasoline engine. The experimental conditions were selected to cover the daily operating mode, including the cold start and catalyst heating process. The experiments were conducted by varying not only the injectors but also the injection timing which was shifted from the exhaust to intake stroke. The results were evaluated by the fuel consumption and exhaust gas emissions. When these tests were conducted on a production engine, a carefully designed tumble generator was installed at the intake port to enhance the intake air flow. As a result, the injection specifications showed a potential to obtain less fuel consumption and lower engine-out emissions was evaluated.
Technical Paper

Improvement of Post-Oxidation Phenomena with Lambda-split, Post-Injection and Mixing Improvement of Exhaust Gas in Turbocharged GDI Engine

2023-09-29
2023-32-0094
Post-oxidation has been used to enhance the chemical reactions in the exhaust gas pipes, leading to the activations of the turbocharger and catalyst at cold state. In this research, a detailed study of the various mechanisms for post-oxidation is performed. For the post-oxidation activation, the unburned gas species (CO, THC, H2) in the exhaust manifold must be produced by some methodologies, such as scavenging, lambda-split, and post-injection. The required amount of O2 concentration can be either supplied by the scavenging (valve overlap tuning) or the secondary air injection (SAI) system. Mixing the species is also an important key to promoting post- oxidation, and an internal bypass adapter with a modified exhaust adapter shape was developed and evaluated.
X