Refine Your Search

Topic

Search Results

Journal Article

Benefits and Drawbacks of Compression Ratio Reduction in PCCI Combustion Application in an Advanced LD Diesel Engine

2009-04-20
2009-01-1447
The present paper describes an experimental study on the effect of the compression ratio on the performance of a LD diesel engine operating with a PCCI calibration, near the estimated EURO 6/Tier2 Bin5 NOx emission limits. The research activity is the result of a collaborative project between Istituto Motori and Centro Ricerche Fiat aimed to carry out an exhaustive analysis of the compression ratio (CR) influence on the performance of a LD diesel engine. Starting from a reference engine configuration the CR was reduced in two steps sequentially. Each CR value was characterized under PCCI operation mode and, under conventional diesel operating mode, at maximum torque. The exploration of the PCCI application in the NEDC operating area was performed prefixing limits on maximum fuel consumption, maximum pressure rise and maximum tolerable smoke. The main result was that no significant increment in PCCI application area reducing the CR was possible without overcoming the limits.
Journal Article

Alternative Diesel Fuels Effects on Combustion and Emissions of an Euro4 Automotive Diesel Engine

2009-09-13
2009-24-0088
The present paper describes the first results of a cooperative research project between GM Powertrain Europe and Istituto Motori of CNR aimed at studying the impact of Fatty-Acid Methyl Esters (FAME) and gas-to-liquid (GTL) fuel blends on the performance, emissions and fuel consumption of modern automotive diesel engines. The tests were performed on the architecture of GM 1.9L Euro4 diesel engine for passenger car application, both on optical single-cylinder and on production four-cylinder engines, sharing the same combustion system configuration. Various blends of biodiesels as well as reference diesel fuel were tested. The experimental activity on the single-cylinder engine was devoted to an in-depth investigation of the combustion process and pollutant formation, by means of different optical diagnostics techniques, based on imaging multiwavelength spectroscopy.
Journal Article

Experimental Investigation of the Benefits of Cooled and Extra-cooled Low-Pressure EGR on a Light Duty Diesel Engine Performance

2009-09-13
2009-24-0126
The present paper describes an experimental study on the application of a Low Pressure EGR system, equipped with an high efficiency cooler, to a LD diesel engine operating with both conventional combustion and PCCI mode. The research activity is aimed to carry out an analysis of the potentiality of the cooling (with engine water at 90°C) and super-cooling (with external water at 20°C) of the low pressure EGR flow gas on the simultaneous reduction of fuel consumption and pollutant emissions. The effects were evaluated running the engine with diesel conventional combustion and PCCI mode in several engine operating points. The employed engine was a 4-cyliders LD CR diesel engine of two liters of displacement at the state of art of the current engine technology. The overall results identified benefits on both the fuel consumption and emissions with the use of a low pressure EGR system with respect to the “classical” high pressure EGR one.
Journal Article

Alternative Diesel Fuels Effects on Combustion and Emissions of an Euro5 Automotive Diesel Engine

2010-04-12
2010-01-0472
The present paper describes some results of a cooperative research project between GM Powertrain Europe and Istituto Motori of CNR aimed at studying the impact of FAME and GTL fuel blends on the performance, emissions and fuel consumption of the latest-generation automotive diesel engines. The investigation was carried out on the newly released GM 2.0L 4-cylinder “torque-controlled” Euro 5 diesel engine for PC application and followed previous tests on its Euro 4 version, in order to track the interaction between the alternative fuels and the diesel engine, as the technology evolves. Various blends of first generation biodiesels (RME, SME) and GTL with a reference diesel fuel were tested, notably B20, B50 and B100. The tests were done in a wide range of engine operation points for the complete characterization of the biodiesels performance in the NEDC cycle, as well as in full load conditions.
Journal Article

Impact of RME and GTL Fuel on Combustion and Emissions of a “Torque-Controlled” Diesel Automotive Engines

2010-05-05
2010-01-1477
The present paper describes some results of a research project aimed at studying the impact of alternative fuels blends on the emissions and fuel consumption of an Euro 5 automotive diesel engine. Two alternative fuels were chosen for the experiments: RME and GTL. The tests were done in the three most important operating conditions for the engine emission calibration. Moreover, the NOx-PM trade-off by means of EGR sweep was performed in the same operating conditions, in order to evaluate the engine EGR tolerability when burning low sooting fuels as the RME. The investigations put in evidence that the impact of the alternative fuels on modern diesel engines remains significant. This also depends on the interaction between the alternative fuel characteristics and the engine-management strategies, as described in detail in the paper.
Journal Article

Analysis of Nozzle Coking Impact on Emissions and Performance of a Euro5 Automotive Diesel Engine

2013-09-08
2013-24-0127
The present paper reassumes the results of an experimental study focused on the effects of the nozzle injector's coking varying the flow number (FN); the performance and emissions of an automotive Euro5 diesel engine have been analyzed using diesel fuel. As the improvement of the diesel engine performance requires a continuous development of the injection system and in particular of the nozzle design, in the last years the general trend among OEMs is lowering nozzle flow number and, as a consequence, nozzle holes size. The study carried out moves from the consideration that a reduction of the nozzle holes diameter could increase the impact of their coking process. For this purpose, an experimental campaign has been realized, testing the engine in steady state in three partial load operating points, representative of the European homologation driving cycle, and in full load conditions.
Technical Paper

Model Development of a CNG Active Pre-chamber Fuel Injection System

2021-09-05
2021-24-0090
Natural gas as an internal combustion engine fuel is taking a predominant role as a mid-term solution to pollution due to combustion driven human activities both in the energy and transport sectors. Engine researchers and manufacturers are in the process of investigating and improving strategies that decrease emissions and fuel consumption, without compromising engine performance and efficiency; active pre-chamber configurations are to be accounted for as one of these. A relatively small amount of fuel (up to 10 % of the total fuel-energy requirement) is introduced in the confined volume of the pre-chamber and forms a close-to-stoichiometric mixture with fresh charge that is introduced from the main combustion chamber during the compression stroke. After spark-ignition the products of this early stage of combustion can ignite ultra-lean mixtures (with λ up to 2) through the Turbulent Jet Ignition mechanism, hence reducing fuel consumption as well as noxious emissions such as NOx.
Journal Article

Experimental Evaluation of Compression Ratio Influence on the Performance of a Dual-Fuel Methane-Diesel Light-Duty Engine

2015-09-06
2015-24-2460
The paper reports an experimental study on the effect of compression ratio variation on the performance and pollutant emissions of a single-cylinder light-duty research diesel engine operating in DF mode. The architecture of the combustion system as well as the injection system represents the state-of-the-art of the automotive diesel technology. Two pistons with different bowl volume were selected for the experimental campaign, corresponding to two CR values: 16.5 and 14.5. The designs of the piston bowls were carefully performed with the 3D simulation in order to maintain the same air flow structure at the piston top dead center, thus keeping the same in-cylinder flow characteristics versus CR. The engine tests choice was performed to be representative of actual working conditions of an automotive light-duty diesel engine.
Journal Article

Determination of Oxidation Characteristics and Studies on the Feasibility of Metallic Nanoparticles Combustion Under ICE-Like Conditions

2011-09-11
2011-24-0105
The present work relates to the investigation of the basic oxidation characteristics of iron and aluminium nanoparticles as well as the feasibility of their combustion under both Internal Combustion Engine (ICE)-like and real engine conditions. Based on a series of proof-of-concept experiments, combustion was found to be feasible taking place in a controllable way and bearing similarities to the respective case of conventional fuels. These studies were complimented by relevant in-situ and ex-situ/post-analysis, in order to elaborate the fundamental phenomena occurring during combustion as well as the extent and ‘quality’ of the process. The oxidation mechanisms of the two metallic fuels appear different and -as expected- the energy release during combustion of aluminium is significantly higher than that released in the case of iron.
Journal Article

Analysis of Particle Mass and Size Emissions from a Catalyzed Diesel Particulate Filter during Regeneration by Means of Actual Injection Strategies in Light Duty Engines

2011-09-11
2011-24-0210
The diesel particulate filters (DPF) are considered the most robust technologies for particle emission reduction both in terms of mass and number. On the other hand, the increase of the backpressure in the exhaust system due to the accumulation of the particles in the filter walls leads to an increase of the engine fuel consumption and engine power reduction. To limit the filter loading, and the backpressure, a periodical regeneration is needed. Because of the growing interest about particle emission both in terms of mass, number and size, it appears important to monitor the evolution of the particle mass and number concentrations and size distribution during the regeneration of the DPFs. For this matter, in the presented work the regeneration of a catalyzed filter was fully analyzed. Particular attention was dedicated to the dynamic evolution both of the thermodynamic parameters and particle emissions.
Technical Paper

Experimental Analysis of the Operating Parameter Influence on the application of Low Temperature Combustion in the Modern Diesel Engines

2007-07-23
2007-01-1839
The present paper describes the effects of some operating parameters on the performance of a single cylinder research engine when it runs under Low Temperature Combustion (LTC) conditions. Aim of the experimental work was to explore the potential of the control of each parameter on the improvement of LTC application to the modern LD diesel engines for passenger cars. In particular, the effects on LTC performance of the following operating parameters in different engine test points were analyzed: intake air temperature, exhaust EGR cooler temperature, intake pipe pressure, exhaust pipe pressure and swirl ratio. Some parameters have shown a particular influence on the improvement of EGR tolerability for maximum NOx reduction preserving fuel consumption and smoke, while others have evidenced poor sensitivity.
Technical Paper

Compression Ratio Influence on the Performance of an Advanced Single-Cylinder Diesel Engine Operating in Conventional and Low Temperature Combustion Mode

2008-06-23
2008-01-1678
The present paper describes a detailed experimental analysis on the effect of the compression ratio on the performance of a single-cylinder research diesel engine operating with both conventional combustion and Low Temperature Combustion mode for low NOx emissions. The single-cylinder engine was developed with the same combustion system architecture of the four-cylinder FIAT 1.9 liter Multi-Jet. Starting from an engine configuration with a compression ratio of 16.5, the compression ratio was reduced to 14.5. For both the geometric configurations, engine performance was evaluated in terms of thermodynamic parameters, emissions and fuel consumption in some operating test points representative of the engine behavior running on the NEDC cycle.
Technical Paper

The Effect of “Clean and Cold” EGR on the Improvement of Low Temperature Combustion Performance in a Single Cylinder Research Diesel Engine

2008-04-14
2008-01-0650
In the present paper, the effect of the clean and cold EGR flow on the performance of a diesel engine running under conventional and Low Temperature Combustion conditions is investigated by means of experimental tests on a single-cylinder research engine. The engine layout was “ad hoc” designed to isolate the effect of the clean and cold recirculated gas flow on the combustion quality. The results have shown that the thermodynamic temperature is the main factor affecting the engine performances, while the effect of a cleaner EGR flow, in terms of lower smoke and unburned compounds (HC and CO), is negligible.
Technical Paper

Multidimensional Simulations of Combustion in Methane-Diesel Dual-Fuel Light-Duty Engines

2017-03-28
2017-01-0568
The adoption of gaseous fuels for Light Duty (LD) engines is considered a promising solution to efficiently reduce greenhouse gases emissions and diversify fuels supplies, while keeping pollutants production within the limits. In this respect, the Dual Fuel (DF) concept has already proven to be, generally speaking, a viable solution, industrially implemented for several applications in the Heavy-Duty (HD) engines category. Despite this, some issues still require a technological solution, preventing the commercialization of DF engines in wider automotive fields, including the release of high amounts of unburned species, possibility of engine knock, chance of thermal efficiency reduction. In this framework, numerical simulation can be a useful tool, not only to better understand specific characteristics of DF combustion, but also to explore specific geometrical modifications and engine calibrations capable to adapt current LD architectures to this concept.
Technical Paper

How Much Regeneration Events Influence Particle Emissions of DPF-Equipped Vehicles?

2017-09-04
2017-24-0144
Diesel particulate filter (DPF) is the most effective emission control device for reducing particle emissions (both mass, PM, and number, PN) from diesel engines, however many studies reported elevated emissions of nanoparticles (<50 nm) during its regeneration. In this paper the results of an extensive literature survey is presented. During DPF active regeneration, most of the literature studies showed an increase in the number of the emitted nanoparticles of about 2-3 orders of magnitude compared to the normal operating conditions. Many factors could influence their amount, size distribution, chemical-physical nature (volatiles, semi-volatiles, solid) and the duration of the regenerative event: i.e. DPF load and thermodynamic conditions, lube and fuel sulfur content, engine operative conditions, PN sampling and measurement methodologies.
Technical Paper

Parametric Analysis of the Effect of Pilot Quantity, Combustion Phasing and EGR on Efficiencies of a Gasoline PPC Light-Duty Engine

2017-09-04
2017-24-0084
In this paper, a parametric analysis on the main engine calibration parameters applied on gasoline Partially Premixed Combustion (PPC) is performed. Theoretically, the PPC concept permits to improve both the engine efficiencies and the NOx-soot trade-off simultaneously compared to the conventional diesel combustion. This work is based on the design of experiments (DoE), statistical approach, and investigates on the engine calibration parameters that might affect the efficiencies and the emissions of a gasoline PPC. The full factorial DoE analysis based on three levels and three factors (33 factorial design) is performed at three engine operating conditions of the Worldwide harmonized Light vehicles Test Cycles (WLTC). The pilot quantity (Qpil), the crank angle position when 50% of the total heat is released (CA50), and the exhaust gas recirculation (EGR) factors are considered. The goal is to identify an engine calibration with high efficiency and low emissions.
Technical Paper

Assessment of Closed-Loop Combustion Control Capability for Biodiesel Blending Detection and Combustion Impact Mitigation for an Euro5 Automotive Diesel Engine

2011-04-12
2011-01-1193
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the impact of both fresh and highly oxidized Rapeseed Methyl Ester (RME) at different levels of blending on performance, emissions and fuel consumption of modern automotive diesel engines featuring Closed-Loop Combustion Control (CLCC). In parallel, the capability of this system to detect the level of biodiesel blending through the use of specific detection algorithms was assessed. The tests were performed on the recently released 2.0L Euro5 GM diesel engine for passenger car application equipped with embedded pressure sensors in the glow plugs. Various blends of fresh and aged RME with reference diesel fuel were tested, notably 20% RME by volume (B20), 50% (B50) and pure RME (B100).
Technical Paper

Experimental and Numerical Analysis of a High-Pressure Outwardly Opening Hollow Cone Spray Injector for Automotive Engines

2017-03-28
2017-01-0840
In the aim of reducing CO2 emissions and fuel consumption, the improvement of the diesel engine performance is based on the optimization of the whole combustion system efficiency. The focus of new technological solutions is devoted to the optimization of thermodynamic efficiency especially in terms of reduction of losses of heat exchange. In this context, it is required a continuous development of the engine combustion system, first of all the injection system and in particular the nozzle design. To this reason in the present paper a new concept of an open nozzle spray was investigated as a possible solution for application on diesel engines. The study concerns some experimental and numerical activities on a prototype of an open nozzle. An external supplier provided the prototypal version of the injector, with a dedicated piezoelectric actuation system, and with an appropriate choice of geometrical design parameters.
Technical Paper

Analysis of Diesel Injector Nozzle Flow Number Impact on Emissions and Performance of a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0891
The present paper describes the results of a research project aimed at studying the impact of nozzle flow number on a Euro5 automotive diesel engine, featuring Closed-Loop Combustion Control. In order to optimize the trade-offs between fuel economy, combustion noise, emissions and power density for the next generation diesel engines, general trend among OEMs is lowering nozzle flow number and, as a consequence, nozzle hole size. In this context, three nozzle configurations have been characterized on a 2.0L Euro5 Common Rail Diesel engine, coupling experimental activities performed on multi-cylinder and optical single cylinder engines to analysis on spray bomb and injector test rigs. More in detail, this paper deeply describes the investigation carried out on the multi-cylinder engine, specifically devoted to the combustion evolution and engine performance analysis, varying the injector flow number.
Technical Paper

Impact of Biodiesel on Particle Emissions and DPF Regeneration Management in a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0839
Biofuel usage is increasingly expanding thanks to its significant contribution to a well-to-wheel (WTW) reduction of greenhouse gas (GHG) emissions. In addition, stringent emission standards make mandatory the use of Diesel Particulate Filter (DPF) for the particulate emissions control. The different physical properties and chemical composition of biofuels impact the overall engine behaviour. In particular, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value (LHV). More specifically, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value, respectively. The particle emissions, in fact, are lower mainly because of the higher oxygen content. Subsequently less frequent regenerations are required.
X