Refine Your Search

Topic

Search Results

Technical Paper

The Variation of Functional Characteristics of a Euro VI Selective Catalytic Reduction Reactor after Ageing

2020-09-15
2020-01-2205
The selective catalytic reduction (SCR) of nitrogen oxides by ammonia is commonly applied as a method of exhaust aftertreatment for lean burn compression ignition (CI) engines. The catalytic reactor of an SCR system, like all catalytic emission control devices, is susceptible to partial deactivation as its operating time progresses. Long-term exposure of an SCR reactor to exhaust gas of fluctuating temperature and composition results in variations of the characteristics of its catalytically active layer. The aim of this study was to observe and investigate the variation of parameters characterizing the SCR reactor as a result of its ageing. Attention was paid to changes in ammonia storage capacity, selectivity of chemical reactions and maximum achievable NOx conversion efficiency. The experimental setup was a heavy duty (HD) Euro VI-compliant engine and its aftertreatment system (ATS). The setup was installed on a transient engine dyno instrumented with emission measurement devices.
Journal Article

Performance of Particle Oxidation Catalyst and Particle Formation Studies with Sulphur Containing Fuels

2012-04-16
2012-01-0366
The aim of this paper is to analyze the quantitative impact of fuel sulfur content on particulate oxidation catalyst (POC) functionality, focusing on soot emission reduction and the ability to regenerate. Studies were conducted on fuels containing three different levels of sulfur, covering the range of 6 to 340 parts per million, for a light-duty application. The data presented in this paper provide further insights into the specific issues associated with usage of a POC with fuels of higher sulfur content. A 48-hour loading phase was performed for each fuel, during which filter smoke number, temperature and back-pressure were all observed to vary depending on the fuel sulfur level. The Fuel Sulfur Content (FSC) affected also soot particle size distributions (particle number and size) so that with FSC 6 ppm the soot particle concentration was lower than with FSC 65 and 340, both upstream and downstream of the POC.
Journal Article

A Comparison of Ammonia Emission Factors from Light-Duty Vehicles Operating on Gasoline, Liquefied Petroleum Gas (LPG) and Compressed Natural Gas (CNG)

2012-04-16
2012-01-1095
Vehicular ammonia emissions are currently unregulated, even though ammonia is harmful for a variety of reasons, and the gas is classed as toxic. Ammonia emissions represent a serious threat to air quality, particularly in urban settings; an ammonia emissions limit may be introduced in future legislation. Production of ammonia within the cylinder has long been known to be very limited. However, having reached its light-off temperature, a three-way catalyst can produce substantial quantities of ammonia through various reaction pathways. Production of ammonia is symptomatic of overly reducing conditions within the three-way catalyst (TWC), and depends somewhat upon the particular precious metals used. Emission is markedly higher during periods where demand for engine power is higher, when the engine will be operating under open-loop conditions.
Technical Paper

A Comparison of Tailpipe Gaseous Emissions from the RDE and WLTP Test Procedures on a Hybrid Passenger Car

2020-09-15
2020-01-2217
Non-plugin hybrids represent a technology with the capability to significantly reduce fuel consumption (FC), without any changes to refuelling infrastructure. The EU market share for this vehicle type in the passenger car segment was 3% in 2018 and this powertrain type remains of interest as an option to meet the European Union (EU) fleet average CO2 limits. EU legislative procedures require emissions limits to be met during the chassis dynamometer test and in the on-road real driving emissions (RDE) test, while official CO2/FC figures are quantified via the laboratory chassis dynamometer test only. This study employed both legislative test procedures and compared the results. Laboratory (chassis) dynamometer testing was conducted using the Worldwide Harmonised Light Vehicles Test Procedure (WLTP). On-road testing was carried out in accordance with RDE requirements, measuring the concentration of regulated gaseous emissions and the number of solid particles (PN).
Technical Paper

The Influence of Synthetic Oxygenates on Euro IV Diesel Passenger Car Exhaust Emissions

2007-01-23
2007-01-0069
In the year 2005, the EURO IV fuel specification came into effect and the requirements for diesel fuel properties have become even more stringent. In this way, the potential of diesel fuel for emissions reduction has already been to a large extent exploited and the most emissions-sensitive fuel parameters can now be changed in a narrow range only. The shortfall in NOx and PM emissions control in diesel engines is, however, so great that more drastic fuel changes will be needed. One of the most promising fuel modifications for exhaust emissions control seems to be oxygenated additives. The objective of the study described in this paper was to analyze under transient conditions the influence of synthetic oxygenated fuel additives on exhaust emissions. The tests were conducted on a Euro IV passenger car. Six oxygenated additives were tested over the New European Driving Cycle (NEDC).
Technical Paper

The Influence of Synthetic Oxygenates on Euro IV Diesel Passenger Car Exhaust Emissions - Part 2

2008-06-23
2008-01-1813
The paper presents the test results of the influence of maleate oxygenated additives to diesel fuel on exhaust emissions. Following the previous tests of glycol ethers (SAE Paper 2007-01-0069), the authors decided to use maleates as oxygenates to obtain greater changes in PM/NOx trade-off than the changes obtained as a result of the use of glycol ethers. It was found that in the NEDC maleates at the same concentration as in the case of glycol ethers ensure more favourable changes of PM/NOx trade-off and, as a matter of fact, caused greater reduction in PM emissions without the growth of NOx emissions, however, at the cost of CO and HC emissions. The tests performed in the FTP-75 confirmed a significantly weaker influence of maleates, both positive (PM) and negative (CO, HC) than in the NEDC. They did not find in both cycles any influence of maleates at the tested concentration upon fuel consumption and CO2 emissions.
Technical Paper

An analysis of CO2 emissions and fuel consumption from new automotve vehicles in aspects of future regulations

2000-06-12
2000-05-0173
Carbon dioxide (CO2) is one of the basic greenhouse gases and according to some opinions their influence upon warming the earth climate is significant. Acceptance of this prognosis has lead to worldwide legislative limitation covering all CO2 emitting engines. The paper reviews the relationship between CO2 emissions and fuel consumption in a range of automobiles (with SI and CI engines) presented for type approval over last four years (1996-1999). The paper presents an analysis of the results of an examination of the CO2 emission and the fuel consumption of more like 150 automotive vehicles (M1 and N1 categories), European, Japanese/Korean manufacturer and the US. The procedures used in the examination for approval in the presented scope have been described and several results of these examinations conducted in Poland in accordance with the requirements of the Regulations No. 101 ECE UNO (directive 93/116 EC) have been evaluated.
Technical Paper

The Comparison of the Emissions from Light Duty Vehicle in On-road and NEDC Tests

2010-04-12
2010-01-1298
The investigations into the emissions from light-duty vehicles have been carried out on a chassis dynamometer (NEDC test in Europe and FTP75 test in the US). Such tests do not entirely reflect the real road conditions and that is why we should analyze the correlation of the laboratory versus on-road test results. The paper presents the on-road test results obtained in an urban and extra urban cycles. For these measurements a portable SEMTECH DS analyzer by SENSORS has been used. The device is an analyzer enabling an on-line measurement of the emission gases concentration in a real driving cycle under real road conditions. The road tests were performed on road portions of several kilometers each. The obtained results were compared with the results obtained for the same vehicle during the NEDC test on a chassis dynamometer. The comparative analysis was performed including the urban and extra-urban cycles.
Technical Paper

Effects of Fuel Properties on Exhaust Emissions from the Latest Light-Duty DI Diesel Engine

2003-05-19
2003-01-1882
The great reduction in future diesel engine emission limits, especially PM and NOx, forces one to develop means to comply with stringent legislation. Environmentally friendly fuels are regarded as a very effective means to decrease emissions. Although the emission reduction is less than could be achieved by the most modern engine technology or alternative fuels, the immediate net effect of reformulated diesel fuel on emissions is significant, as it takes place over the whole vehicle population. The experimental results presented in this paper were obtained within a research program investigating the effect of different fuels upon emissions from compression-ignition automotive engines. The research were carried out in the laboratories of the BOSMAL Automotive R & D Centre in co-operation to Institute of Internal Combustion Engines at Poznan University of Technology. The partial results of this research program were presented in SAE Paper 2002-01-2219.
Technical Paper

Exhaust Emissions of Gaseous and Solid Pollutants Measured over the NEDC, FTP-75 and WLTC Chassis Dynamometer Driving Cycles

2016-04-05
2016-01-1008
Concern over greenhouse gas (GHG) emissions and air quality has made exhaust emissions from passenger cars a topic interest at an international level. This situation has led to the re-evaluation of testing procedures in order to produce more “representative” results. Laboratory procedures for testing exhaust emissions are built around a driving cycle. Cycles may be developed in one context but later used in another: for example, the New European Driving Cycle (NEDC) was not developed to measure fuel consumption, but has ended up being used to that end. The new Worldwide harmonized Light vehicles Test cycle (the WLTC) will sooner or later be used for measuring regulated exhaust emissions. Legal limits for emissions of regulated pollutants are inherently linked to the test conditions (and therefore to the driving cycle); inter-cycle correlations for regulated pollutants are an important research direction.
Technical Paper

The Effect of Various Petrol-Ethanol Blends on Exhaust Emissions and Fuel Consumption of an Unmodified Light-Duty SI Vehicle

2011-09-11
2011-24-0177
Due to limited fossil fuel resources and a need to reduce anthropogenic CO₂ emissions, biofuel usage is increasing in multiple markets. Ethanol produced from the fermentation of biomass has been of interest as a potential partial replacement for petroleum for some time; for spark-ignition engines, bioethanol is the alternative fuel which is currently of greatest interest. At present, the international market for ethanol fuel consists of E85 fuel (with 85 percent ethanol content), as well as lower concentrations of ethanol in petrol for use in standard vehicles (E5, E10). The impact of different petrol-ethanol blends on exhaust emissions from unmodified vehicles remains under investigation. The potential for reduced exhaust emissions, improved security of fuel supply and more sustainable fuel production makes work on the production and usage of ethanol and its blends an increasingly important research topic.
Technical Paper

Excess Emissions and Fuel Consumption of Modern Spark Ignition Passenger Cars at Low Ambient Temperatures

2012-04-16
2012-01-1070
Cold starts are demanding events for spark-ignition (SI) internal combustion engines. When the temperatures of the engine oil, coolant and the engine block are close to the ambient temperature, start-up can be difficult to achieve without fuel enrichment, which results in significant excesses in exhaust emissions and fuel consumption. In general, the lower the ambient temperature, the more substantial these problems are. Many nations frequently experience sub-zero ambient temperatures, and the European Union (among others) has specified an emissions test at low ambient temperature (-7°C). Passenger cars typically experience one to two cold start events per day, and so both cold starts and the warm-up period that follows are significant in terms of exhaust emissions. This paper examines emissions at low ambient temperatures with a special focus on cold start; emissions are also compared to start-up at a higher ambient temperature (24°C).
Technical Paper

Chassis Dynamometer Testing of Ammonia Emissions from Light-Duty SI Vehicles in the Context of Emissions of Reactive Nitrogen Compounds

2013-04-08
2013-01-1346
Ammonia is a reactive nitrogen compound (RNC - nitrogen-based gaseous molecules with multiple adverse impacts on human health and the biosphere). A three-way catalyst can produce substantial quantities of ammonia through various reaction pathways. This study presents a brief literature review, and presents experimental data on ammonia emissions from seven Euro 5 passenger cars, using different gasoline fuels and a CNG fuel. All vehicles were tested on a chassis dynamometer over the New European Driving Cycle. For six of the vehicles, ammonia was quantified directly at tailpipe (using two different analyzers); emissions from one vehicle were subjected to Fourier Transform Infra-Red (FTIR) analysis. Emissions of ammonia from these vehicles were generally low in comparison to other chassis dynamometer studies, perhaps attributable to the favorable laboratory test conditions and the age of the vehicles.
Technical Paper

Cold Start Emissions Investigation at Different Ambient Temperature Conditions

1998-02-23
980401
A vital question for car manufacturers in countries where the temperature over night falls below freezing, is the significant increase of CO (carbon monoxide) and HC (hydrocarbon) emissions during the start and warm-up of spark ignition engines. ECE (Economic Commission for Europe) (UDC) (Urban Driving Cycle) cycles, divided into elementary phases, have been used to determine the level of harmful CO and HC emissions and fuel consumption in the cold start and warm up phase. Tests were undertaken on cars conditioned in temperatures ranging from +22°C to -15°C have shown significant increases in CO and HC as the temperature decreases.
Technical Paper

Emission of CO2 and Fuel Consumption for Automotive Vehicles

1999-03-01
1999-01-1074
The paper reviews the relationship between CO2 emissions and fuel consumption in a range of automobiles presented for type approval over the last two years. The procedures used in the examination for approval in the presented scope have been described and several results of these examinations conducted in Poland in accordance with the requirements of the Regulations no.101 ECE UNO (Directive 93/116 EC) are evaluated. The evaluation of the possibilities of fulfilling the existing and future requirements of the above mentioned CO2 emissions are discussed.
Technical Paper

A Comparison of Gaseous Emissions from a Hybrid Vehicle and a Non-Hybrid Vehicle under Real Driving Conditions

2018-04-03
2018-01-1272
In this study, two vehicles were tested under real driving conditions with gaseous exhaust emissions measured using a portable emissions measurement system (PEMS). One of the vehicles featured a hybrid powertrain with a spark ignition internal combustion engine, while the other vehicle featured a non-hybrid (conventional) spark ignition internal combustion engine. Aside from differences in the powertrain, the two test vehicles were of very similar size, weight and aerodynamic profile, meaning that the power demand for a given driving trace was very similar for both vehicles. The test route covered urban conditions (but did include driving on a road with speed limit 90 km/h). The approximate test route distance was 12 km and the average speed was very close to 40 km/h.
Technical Paper

Exhaust Emissions from Two Euro 6d-Compliant Plug-In Hybrid Vehicles: Laboratory and On-Road Testing

2021-04-06
2021-01-0605
This paper discusses the legislative situation regarding type approval of plug-in hybrid vehicles (also known as off-vehicle charging hybrid-electric vehicles, OVC-HEV) in the range of exhaust emissions and fuel consumption. A range of tests were conducted on two Euro 6d-complaint OVC-HEVs to quantify emissions. Procedures were based on EU legislative requirements. For laboratory (chassis dyno) testing, two different test cycles and three different ambient temperatures were used for testing. Furthermore, in some cases additional measurements were performed, including measurement of emissions of particulate matter and continuous analysis of regulated and unregulated pollutants in undiluted exhaust. Consumption of electrical energy was also monitored. On-road testing was conducted on the test vehicle tested on the chassis dyno in the tests mentioned above, as well as on a second OVC-HEV test vehicle.
Technical Paper

Exhaust Emissions from an SUV with a Spark-Ignition Engine Tested Using EU and US Legislative Driving Cycles and EU RDE Procedures

2021-04-06
2021-01-0616
Despite an overall trend towards harmonization in vehicle regulations, regional differences persist in the area of exhaust emissions and fuel economy. The test procedure employed can exert a significant impact on the results obtained. In this paper, the EU and US type approval procedures for light duty vehicles are briefly compared and results obtained from several types of test procedure are presented. Specifically, emissions tests were performed on a single SUV which met US Tier III emissions limits. The vehicle featured a conventional, naturally aspirated spark ignition engine with indirect fuel injection and an aftertreatment system consisting of three-way catalysts with no dedicated particulate filtration device. The vehicle’s engine displacement, total mass and power-to-mass ratio were relatively representative of the upper end of the US market, but represented an outlying vehicle in terms of the characteristics of the EU fleet.
Technical Paper

A Comparison of Carbon Dioxide Exhaust Emissions and Fuel Consumption for Vehicles Tested over the NEDC, FTP-75 and WLTC Chassis Dynamometer Test Cycles

2015-04-14
2015-01-1065
Due to concern over emissions of greenhouse gases (GHG; particularly carbon dioxide - CO2), energy consumption and sustainability, many jurisdictions now regulate fuel consumption, fuel economy or exhaust emissions of CO2. Testing is carried out under laboratory conditions according to local or regional procedures. However, a harmonized global test procedure with its own test cycle has been created: the World Harmonized Light Vehicles Test Cycle - WLTC. In this paper, the WLTC is compared to the New European Driving Cycle (NEDC) and the FTP-75 cycle used in the USA. A series of emissions tests were conducted at BOSMAL on a chassis dynamometer in a Euro 6-complaint test facility to determine the impact of the test cycle on CO2 emissions and fuel consumption. While there are multiple differences in the test cycles in terms of dynamicity, duration, distance covered, mean/maximum speed, etc, differences in results obtained over the three test cycles were reasonably limited.
Technical Paper

RDE Testing of Passenger Cars: The Effect of the Cold Start on the Emissions Results

2019-04-02
2019-01-0747
This paper discusses the importance of the inclusion of emissions from the cold start event during legislative on-road tests on passenger cars (RDE - real driving emissions tests conducted under real-world driving conditions, as defined by EU legislation). Results from a recently-registered gasoline-powered vehicle are presented, with the main focus on the comparison of exhaust emission results: excluding/including the cold start during the initial phase of the RDE test. Cold start is the most challenging aspect of emissions control for vehicles with spark ignition engines and the inclusion of the cold start event in RDE test procedure has wide-ranging implications both for the testing process and compliance with RDE legislation via optimisation of aftertreatment systems and the engine calibration. In addition to some theoretical arguments, the results of an RDE-compliant test performed using the aforementioned procedures are presented.
X