Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Digital Electrohydraulic Control for Constant-Deceleration Emergency Braking

2002-03-19
2002-01-1464
A digital electrohydraulic control system for emergency braking is designed, simulated, built, and tested. First, a dynamic model of the system was developed with Matlab Simulink. The parameters are obtained experimentally. Feedback gains are obtained by tuning the model. Then, the digital controller is implemented on an industrial personal computer programmed in Turbo C++. The control strategy is an improved digital version of the PID control. The key element in the control of the brake was an electro-hydraulic proportional pressure valve. Experiments show that the control system successfully realizes constant-deceleration emergency brake within mine safety rules. The same hardware can be reprogrammed for various hoists, different load conditions, and different control objectives. Although the test was conducted on a mine hoist brake, the control system can be applied to most vehicles.
Technical Paper

Characterization of a Vibration Damping Mount

1999-09-13
1999-01-2816
Several available mathematical models for vibration dampers were compared to dynamic test results. The comparison results in a simple model that agrees well with both the magnitude and phase characteristics of experimentally obtained frequency response functions. The resulting model can be used as a correct boundary condition for finite element models of the structure to which the dampers are attached.
Technical Paper

Dynamic Simulation of a Position-Controlled Electrohydraulic System Using EASY5

1999-09-14
1999-01-2855
A servovalve - controlled hydraulic motor - driven positioning system was built. The hydraulic system was modeled and simulated using EASY5 software which had predefined hydraulic components models in addition to the ability of defining new ones. EASY5 model made it possible to study the dynamic behavior of the system under varied conditions of entrained air, motor displacement, motor leakage, and mass changes. Different systems components were tested in order to have the required data needed to build the final model. Pump flow rate, motor leakage, servovalve leakage, and slide table friction were experimentally measured. The slide table dynamic model was proposed and the performance data was measured. Eigenvalue sensitivity analysis showed that fluid line between the hydraulic motor and the servovalve is the most influential factor on system stability.
X