Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Field Test Experience of a Combined DPF and Urea-SCR System Achieving EPA'07 Emission Levels

2005-11-01
2005-01-3575
On-road emission measurements of 23 VN-trucks on a randomly chosen driving cycle, consisting of 10 miles two-lane and 8 miles four-lane road, showed tailpipe NOx emissions on fleet average of 0.96 g/bhp-hr, or 1.06 g/bhp-hr when including the time the exhaust gas temperature was below 200°C. Complementary measurements in a SET-cycle (13 point OICA -cycle) on a chassis dynamometer showed a tailpipe emission of 0.008 g PM per bhp-hr. Moreover, cost analysis show that the diesel fuel consumption remains unchanged whether the truck running on ULSD is equipped with a Combined Exhaust gas AfterTreatment System (CEATS) installed or not.
Technical Paper

Parametric Study of Leveling System Characteristics on Roll Stability of Trailing Arm Air Suspension for Heavy Trucks

2000-12-04
2000-01-3480
A large percentage of on-highway tractors today have air suspensions. Air suspensions require some type of control system to adjust the ride height. This system is usually referred to as a Load Leveling System. These systems come in a variety of different configurations but all basically have the same functions. When designed correctly, the system can reduce driveline vibration, reduce air consumption (improving compressor life and fuel efficiency), provide an accurate 5th wheel height and improve the ride quality. This paper explores how the characteristics of the leveling system affect the roll stability. One and Two-valve systems are considered, as well as, the position of the valve, response times, valve deadband and the systems response to an off-center load. Notably not every conceivable condition has been considered.
Technical Paper

Optimized Rigid Side Underride Protection Device Designs for Tractor-Trailers and Straight Trucks

2014-04-01
2014-01-0565
This work describes the design and testing of side underride protection devices (SUPD) for tractor-trailers and straight trucks. Its goal is to reduce the incompatibility between small passenger cars and these large vehicles during side collisions. The purpose of these crash attenuating guards is to minimize occupant injury and passenger compartment intrusion. The methods presented utilize a regulation previously created and published for testing the effectiveness of these devices based on the principles of a force application device already implemented in the Canadian rear underride guard regulation. Topology and multi-objective optimization design processes are outlined using a proposed design road map to create the most feasible SUPD. The test vehicle in question is a 2010 Toyota Yaris which represents the 1100C class of vehicle from the Manual for Assessing Safety Hardware (MASH).
Journal Article

Aerodynamic Optimization of Trailer Add-On Devices Fully- and Partially-Skirted Trailer Configurations

2015-09-29
2015-01-2885
As part of the United States Department of Energy's SuperTruck program, Volvo Trucks and its partners were tasked with demonstrating 50% improvement in overall freight efficiency for a tractor-trailer, relative to a best in class 2009 model year truck. This necessitated that significant gains be made in reducing aerodynamic drag of the tractor-trailer system, so trailer side-skirts and a trailer boat-tail were employed. A Lattice-Boltzmann based simulation method was used in conjunction with a Kriging Response Surface optimization process in order to efficiently describe a design space of seven independent parameters relating to boat-tail and side-skirt dimensions, and to find an optimal configuration. Part 1 concerns a fully-skirted tractor-trailer system, and consists of an initial phase of optimization, followed by a mid-project re-evaluation of constraints, and an additional period of optimization.
Journal Article

Influence of Class-8 Truck Passing Oncoming Truck Using CFD Simulation

2022-09-13
2022-01-1151
The commercial vehicle development process needs to consider the vehicle aerodynamics not only in ideal flow conditions, but also in the turbulent real world environment. The turbulent real world environment includes not only atmospheric turbulence, but also the vehicle to vehicle interactions that happen when driving around other vehicles or into and out of the wake of in/on coming vehicles. A vehicle driving into the wake of an oncoming vehicle not only experiences an increase in the total aerodynamic forces, it also experiences unsteady transient loads over the vehicle components such as windshield, mirror, sunvisor, door and side fairing. To properly design specific components, designers need to understand the magnitude of unsteady forces on various vehicle components, otherwise these components may fail which imposes warranty and safety risks. In this paper, we attempt to understand the various forces acting on the primary vehicle during a passing maneuver.
X