Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Parametric Study of Leveling System Characteristics on Roll Stability of Trailing Arm Air Suspension for Heavy Trucks

2000-12-04
2000-01-3480
A large percentage of on-highway tractors today have air suspensions. Air suspensions require some type of control system to adjust the ride height. This system is usually referred to as a Load Leveling System. These systems come in a variety of different configurations but all basically have the same functions. When designed correctly, the system can reduce driveline vibration, reduce air consumption (improving compressor life and fuel efficiency), provide an accurate 5th wheel height and improve the ride quality. This paper explores how the characteristics of the leveling system affect the roll stability. One and Two-valve systems are considered, as well as, the position of the valve, response times, valve deadband and the systems response to an off-center load. Notably not every conceivable condition has been considered.
Technical Paper

Optimized Rigid Side Underride Protection Device Designs for Tractor-Trailers and Straight Trucks

2014-04-01
2014-01-0565
This work describes the design and testing of side underride protection devices (SUPD) for tractor-trailers and straight trucks. Its goal is to reduce the incompatibility between small passenger cars and these large vehicles during side collisions. The purpose of these crash attenuating guards is to minimize occupant injury and passenger compartment intrusion. The methods presented utilize a regulation previously created and published for testing the effectiveness of these devices based on the principles of a force application device already implemented in the Canadian rear underride guard regulation. Topology and multi-objective optimization design processes are outlined using a proposed design road map to create the most feasible SUPD. The test vehicle in question is a 2010 Toyota Yaris which represents the 1100C class of vehicle from the Manual for Assessing Safety Hardware (MASH).
Technical Paper

Evaluating a Heavy-Duty Truck Climate Control System Using Thermal Comfort-Focused Testing and Simulation Techniques

2019-04-02
2019-01-0696
A test protocol previously developed for automotive applications was adapted to evaluate the performance of a climate control system for a heavy-duty truck. Human subjects, as well as a test system composed of a high-resolution passive sensor manikin and a human thermal model, were employed to evaluate thermal comfort perception. Testing was performed in a climate-controlled wind tunnel equipped with a dynamometer. The truck’s HVAC system performance was evaluated in a −10 °C environment. Additionally, the test protocol was designed to explore a large range of thermal sensation and comfort states. Subjective responses, including thermal sensation and comfort, as well as thermo-physiological state information, quantified by skin temperatures measured across the body, were obtained from the human test participants and compared to that which was indicated by the test system.
X