Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Oxidation Catalytic Converter and Emulsified Fuel Effects on Heavy-Duty Diesel Engine Emissions

2002-03-04
2002-01-1277
A study was conducted to assess the effects of a water-diesel fuel emulsion with and without an oxidation catalytic converter (OCC) on steady-state heavy-duty diesel engine emissions. Two OCCs with different metal loading levels were used in this study. A 1988 Cummins L10-300 heavy-duty diesel engine was operated at the rated speed of 1900 rpm and at 75% and 25% load conditions (EPA modes 9 and 11 respectively) of the 13 mode steady-state test as well as at idle. Raw exhaust emissions' measurements included total hydrocarbons (HC), oxides of nitrogen (NOx) and nitric oxide (NO). Diluted exhaust measurements included total particulate matter (TPM) and its primary constituents, the soluble organic (SOF), sulfate (SO42-) and the carbonaceous solids (SOL) fractions. Vapor phase organic compounds (XOC) were also analyzed. The SOF and XOC samples were analyzed for selected polynuclear aromatic hydrocarbons (PAHs).
Technical Paper

The Influence of a Low Sulfur Fuel and a Ceramic Particle Trap on the Physical, Chemical, and Biological Character of Heavy-Duty Diesel Emissions

1992-02-01
920565
This study was conducted to assess the effects of a low sulfur (<0.05 wt.%) fuel and an uncatalyzed ceramic particle trap on heavy-duty diesel emissions during both steady-state operation and during periods of electrically assisted trap regeneration. A Cummins LTA10-300 engine was operated at two steady-state modes with and without the trap. The exhaust trap system included a Corning EX-54 trap with an electrically assisted regeneration system. Both regulated emissions (oxides of nitrogen - NOx, total hydrocarbons - HC, and total particulate matter - TPM) and some unregulated emissions (polynuclear aromatic hydrocarbons - PAH soluble organic fraction - SOF, sulfates, vapor phase organics, and mutagenic activity) were measured during baseline, trap, and regeneration conditions. Emissions were collected with low sulfur (0.01 wt.%) fuel and compared to emissions with a conventional sulfur (0.32 wt.%) fuel. These fuels also varied in other fuel properties.
Technical Paper

Effects of a Ceramic Particle Trap and Copper Fuel Additive on Heavy-Duty Diesel Emissions

1994-10-01
942068
This research quantifies the effects of a copper fuel additive on the regulated [oxides of nitrogen (NOx), hydrocarbons (HC) and total particulate matter (TPM)] and unregulated emissions [soluble organic fraction (SOF), vapor phase organics (XOC), polynuclear aromatic hydrocarbons (PAH), nitro-PAH, particle size distributions and mutagenic activity] from a 1988 Cummins LTA10 diesel engine using a low sulfur fuel. The engine was operated at two steady state modes (EPA modes 9 and 11, which are 75 and 25% load at rated speed, respectively) and five additive levels (0, 15, 30, 60 and 100 ppm Cu by mass) with and without a ceramic trap. Measurements of PAH and mutagenic activity were limited to the 0, 30 and 60 ppm Cu levels. Data were also collected to assess the effect of the additive on regeneration temperature and duration. Copper species collected within the trap were identified and exhaust copper concentrations quantified.
X