Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Fault-Tree Generation for Embedded Software Implementing Dual-Path Checking

2011-11-17
Given the fast changing market demands, the growing complexity of features, the shorter time to market, and the design/development constraints, the need for efficient and effective verification and validation methods are becoming critical for vehicle manufacturers and suppliers. One such example is fault-tree analysis. While fault-tree analysis is an important hazard analysis/verification activity, the current process of translating design details (e.g., system level and software level) is manual. Current experience indicates that fault tree analysis involves both creative deductive thinking and more mechanical steps, which typically involve instantiating gates and events in fault trees following fixed patterns. Specifically for software fault tree analysis, a number of the development steps typically involve instantiating fixed patterns of gates and events based upon the structure of the code. In this work, we investigate a methodology to translate software programs to fault trees.
Video

Strategies for ISO 26262 Functional Safety Compliance

2011-12-12
Software content within commercial vehicles is growing exponentially. Emissions requirements, multiplexed communications, hybrid-electric technologies, active suspensions and smart sensors are amongst the technologies driving the increase in embedded code. Presenter Christoph Braeuchle , MKS Software, Inc.
Video

Data Driven Testing for HIL Systems

2011-12-05
The amount of software, computation and logic embedded into the vehicle systems is increasing. Testing of complex real time embedded systems using Hardware in Loop (HIL) simulations across different vehicle platforms has been a challenge. Data driven testing enables a qualitative approach to test these complex vehicle systems. It consists of a test framework wherein the test logic and data are independent of the HIL test environment. The data comprises variables used for both input values and output verification values. This data is maintained in a database or in the form of tables. Each row defines an independent test scenario. The entire test data is divided into three categories, High, Medium and Low. This feature gives the advantage of leveraging the same set of test data from Unit Level Testing phases to the Integration Test phase in the V-Cycle of software development. A data driven test approach helps the reuse of tests across vehicle platforms.
Video

Experience with Using Hardware-in-the-Loop Simulation for Validation of OBD in Powertrain Electronics Software

2011-12-05
These advanced checks have resulted in development of many new diagnostic monitors, of varying types, and a whole new internal software infrastructure to handle tracking, reporting, and self-verification of OBD related items. Due to this amplified complexity and the consequences surrounding a shortfall in meeting regulatory requirements, efficient and thorough validation of the OBD system in the powertrain control software is critical. Hardware-in-the-Loop (HIL) simulation provides the environment in which the needed efficiency and thoroughness for validating the OBD system can be achieved. A HIL simulation environment consisting of engine, aftertreatment, and basic vehicle models can be employed, providing the ability for software developers, calibration engineers, OBD experts, and test engineers to examine and validate both facets of OBD software: diagnostic monitors and diagnostic infrastructure (i.e., fault memory management).
SAE MOBILUS Subscription

Wiley Cyber Security Collection Add-On

2018-03-23
As an annual subscription, the Wiley Cyber Security Collection Add-On is available for purchase along with one or both of the following: Wiley Aerospace Collection Wiley Automotive Collection The titles from the Wiley Cyber Security Collection are included in the SAE MOBILUS® eBook Package. Titles: Network Forensics Penetration Testing Essentials Security in Fixed and Wireless Networks, 2nd Edition The Network Security Test Lab: A Step-by-Step Guide Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis Applied Cryptography: Protocols, Algorithms and Source Code in C, 20th Anniversary Edition Computer Security Handbook, Set, 6th Edition Threat Modeling: Designing for Security Other available Wiley collections: Wiley SAE MOBILUS eBook Package Wiley Aerospace Collection Wiley Automotive Collection Wiley Computer Systems Collection Add-On (purchasable with the Wiley Aerospace Collection and/or the Wiley Automotive Collection)
Journal Article

Improving Multi-Axle Vehicle Steering Coordination Performance Based on the Concept of Instantaneous Wheel Turn Center

2019-03-14
Abstract A new concept of instantaneous wheel turn center (IWTC) is proposed to evaluate and improve multi-axle vehicle steering coordination performance. The concept of IWTC and its calculation method are studied. The index named dispersion of IWTC is developed to evaluate the vehicle steering coordination performance quantitatively. The simulation tests based on a three-axle off-road vehicle model are conducted under different vehicle velocities and lateral accelerations. The simulation results show that the turn centers of different wheels are disperse, and the dispersion becomes larger with the increase of vehicle velocities and lateral acceleration. Since suspension has important influences on vehicle steering performance, the genetic algorithm is used to optimize the suspension hard points and bushing stiffness, aiming at minimizing the dispersion of wheel turn centers (DWTC) to improve the vehicle steering coordination performance.
Journal Article

Conceptualization and Modeling of a Flywheel-Based Regenerative Braking System for a Commercial Electric Bus

2019-11-19
Abstract The following article illustrates the detailed study of the development of a unique flywheel-based regenerative braking system (f-RBS) for achieving regenerative braking in a commercial electric bus. The f-RBS is designed for installation in the front wheels of the bus. The particular data values for modeling the bus are taken from multiple legitimate sources to illustrate the development strategy of the regenerative braking system. Mechanical components used in this system have either been carefully designed and analyzed for avoiding fatigue failure or their market selection strategies explained. The positioning of the entire system is decided using MSC Adams View®, hence determining a suitable component placement strategy such that the f-RBS components do not interfere with the bus components. The entire system is modeled on MATLAB Simulink® with sufficient accuracy to get various results that would infer the performance of the system as a whole.
Journal Article

Impact of Dynamic Characteristics of Wheel-Rail Coupling on Rail Corrugation

2019-07-02
Abstract To gain a better understanding of the characteristics of corrugation, including the development and propagation of corrugation, and impact of vehicle and track dynamics, a computational model was established, taking into account the nonlinearity of vehicle-track coupling. The model assumes a fixed train speed of 300 km/h and accounts for vertical interaction force components and rail wear effect. Site measurements were used to validate the numerical model. Computational results show that (1) Wheel polygonalisation corresponding to excitation frequency of 545-572 Hz was mainly attributed to track irregularity and uneven stiffness of under-rail supports, which in turn leads to vibration modes of the bogie and axle system in the frequency range of 500-600 Hz, aggregating wheel wear. (2) The peak response frequency of rail of the non-ballasted track coincides with the excitation frequency of wheel-rail coupling; the resonance results in larger wear amplitude of the rail.
Journal Article

Technology Breakthrough Achieves Objectives for SAE Preload Targets in Heavy Duty Wheel Ends

2009-10-06
2009-01-2887
Patents granted recently to Mr. Rode have changed the industry capability to adjust and verify wheel-end bearings on trucks. Until now it was believed1 that there was nothing available to confirm or verify the most desirable settings of preload on these bearings. The new, breakthrough invention is a tool and spindle-locking nut that permit quick and accurate wheel bearing adjustment by utilizing direct reading force measurement. Bearings can be set to either SAE recommended preloads or specific endplay settings. The author has been working on bearing adjustment methods for industrial applications for over forty years, and considers these inventions to be his most important breakthrough for solving this elusive bearing adjustment problem. Consistent wheel bearing preload adjustment was not possible before, even though it was widely known to achieve the best wheel performance as noted in SAE specification J2535 and re-affirmed in 2006 by the SAE Truck and Bus Wheel Subcommittee.
Journal Article

Modularity Adoption in Product Development: A Case Study in the Brazilian Agricultural Machinery Industry

2014-01-15
2013-01-9093
Facing a competitive and globalized market and with increasingly demanding customers, companies must constantly seek the development of practices in the development of new products. One of the current practices is the adoption of modularity. In that sense, the objective of this paper is to conduct an analysis of this practice in a Brazilian company, which manufactures agricultural machinery. The applicability of modular design in current products is focused. Therefore, a case study approach has been chosen. First, a review of the scientific literature was conducted, followed by field research, for collecting data based on interviews with product engineers and technical documentation. The case study shows the applicability of the modular design concept in a combine header, by increasing the number of repeated components. The modular header approach facilitates the implementation of engineering changes and allows greater standardization of components.
Journal Article

A Sequence Retainable Iterative Algorithm for Rainflow Cycle Counting

2014-01-15
2013-01-9091
To get a sequence retainable rainflow cycle counting algorithm for fatigue analysis, an alternate equivalent explanation to rainflow cycle counting is introduced, based on which an iterative rainflow counting algorithm is proposed. The algorithm decomposes any given load-time history with more than one crest into three sub-histories by two troughs; each sub-history with more than one crest is iteratively decomposed into three shorter sub-histories, till each sub-history obtained contains only one single or no crest. Every sub-history that contains a single crest corresponds to a local closed (full) cycle. The mean load and alternate load component of the local cycle are calculated in parallel with the iterative procedure.
Journal Article

Components Durability, Reliability and Uncertainty Assessments Based on Fatigue Failure Data

2014-09-30
2014-01-2308
Road vibrations cause fatigue failures in vehicle components and systems. Therefore, reliable and accurate damage and life assessment is crucial to the durability and reliability performances of vehicles, especially at early design stages. However, durability and reliability assessment is difficult not only because of the unknown underlying damage mechanisms, such as crack initiation and crack growth, but also due to the large uncertainties introduced by many factors during operation. How to effectively and accurately assess the damage status and quantitatively measure the uncertainties in a damage evolution process is an important but still unsolved task in engineering probabilistic analysis. In this paper, a new procedure is developed to assess the durability and reliability performance, and characterize the uncertainties of damage evolution of components under constant amplitude loadings.
Journal Article

Development of a Dynamic Vibration Absorber to Reduce Frame Beaming

2014-09-30
2014-01-2315
This paper describes the development and testing of a Dynamic Vibration Absorber to reduce frame beaming vibration in a highway tractor. Frame beaming occurs when the first vertical bending mode of the frame is excited by road or wheel-end inputs. It is primarily a problem for driver comfort. Up until now, few options were available to resolve this problem. The paper will review the phenomenon, design factors affecting a vehicle's sensitivity to frame beaming, and the principles of Dynamic Vibration Absorbers (AKA Tuned Mass Dampers). Finally, the paper will describe simulation and testing that led to the development of an effective vibration absorber as a field fix.
Journal Article

Relative Performance Analyses of Independent Front Axle Suspensions for a Heavy-Duty Mining Truck

2014-09-30
2014-01-2320
A range of axle suspensions, comprising hydro-pneumatic struts and diverse linkage configurations, have evolved in recent years for large size mining trucks to achieve improved ride and higher operating speeds. This paper presents a comprehensive analysis of different independent front suspension linkages that have been implemented in various off-road vehicles, including a composite linkage (CL), a candle (CA), a trailing arm (TA), and a double Wishbone (DW) suspension applied to a 190 tons mining truck. Four different suspension linkages are modeled in MapleSim platform to evaluate their kinematic properties. The relative kinematic properties of the suspensions are evaluated in terms of variations in the kingpin inclination, caster, camber, toe-in and horizontal wheel center displacements considering the motion of a hydro-pneumatic strut. The results revealed the CL and DW suspensions yield superior kinematic response characteristics compared to the CA and TA suspensions.
Journal Article

A High Functional Safety Performance Level Machine Controller for a Medium Size Agricultural Tractor

2014-09-30
2014-01-2421
Functional safety requirements and solutions are more expensive when it comes to lower cost machines with less power but same functionalities with respect to big machines. The paper will show a real Electronic Control Unit (ECU) design of a machine controller, controlling both engine working point, transmission, and other utilities like PTO, 4WD, brakes and Differential Lock; the ECU was designed in accordance to ISO 25119 regulation, to meet AgPL = C or even D for some functionalities. The unit is a fully redundant electronic control unit with two CAN networks and some special safe state oriented mechanism, that allow the Performance Level C with less software analysis requirements compared with traditional solutions. All safety critical sensors are redounded and singularly diagnosable, all command effects are directly observable and most of commands are directly diagnosable.
Journal Article

Ride Optimization for a Heavy Commercial Vehicle

2014-04-01
2014-01-0843
The ride comfort of the commercial vehicle is mainly affected by several vibration isolation systems such as the primary suspension system, engine mounting system and the cab mounting system. A rigid-flexible coupling model for the truck was built and analyzed in multi-body environment (ADAMS). The method applying the excitation on the wheels center and the engine mountings in time domain was presented. The variables' effects on the ride performance were studied by design of experiment (DOE). The optimal design was obtained by the co-simulation of the ADAMS/View, iSIGHT and Matlab. It was found that the vertical root mean square (RMS) acceleration and frequency-weighted RMS acceleration on the seat track were reduced about 17% and 11% respectively at different speeds relative to baseline according to ISO 2631-1.
Journal Article

Effect of Soil Deformability on Off-Road Vehicle Ride Dynamics

2013-09-24
2013-01-2383
This study analyzes the effect of soil deformation on ride dynamics of off-road vehicles using a quarter-vehicle model integrating different equivalent soil stiffness models. Soil deformation has an effect on the tire sinkage, wheels contact area and the wheels dynamic interaction with the terrain, which affects the overall ride dynamics of the vehicle. Apart from the very simplified equivalent soil stiffness model documented in the literature, a new equivalent soil stiffness model is developed in this study, which encompasses the effect of soil deformability on tire-soil contact area. Two measured ground roughness profiles are then used for vehicle ride dynamics simulation.
Journal Article

Power Consumption Analysis of a Flexible-Wheel Suspension Planetary Rover Operating upon Deformable Terrain

2013-09-24
2013-01-2384
This study analyzes the power consumption of a specific Planetary Exploration Vehicle (PEV) subsystem known as Flexible-Wheel (FW) suspension, more specifically the interaction between a FW and the deformable terrain upon which it traverses. To achieve this a systematic and analytical calculation procedure has been developed, which culminates in the definition of three dimensionless properties to capture the FW-soil interaction. Aimed towards the design engineer participating in concept evaluation, and the control engineer conducting initial analyses, this study has found that the resistance coefficient for the interaction between a FW and the deformable terrain can, in general, be several orders of magnitude higher than the rolling resistance of a pneumatic tire operating upon rigid terrain.
X