Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Accuracy of Anthropometric Scaling: Using Stature to Estimate Body Segment Lengths

2020-04-14
2020-01-0523
In the fields of forensic accident reconstruction and biomechanical engineering, it is often necessary to estimate the length of a specific body segment for an individual, about whom little is known besides overall stature. Since body proportions and body segment lengths vary throughout the population, there will be some error in these estimations. The current study provides estimates for the accuracy of human body segment length predictions based on stature. In this study, four different methods for predicting body segment lengths based on stature were evaluated. Using publicly available adult and child anthropometric datasets, a leave-one-out cross validation analysis was conducted to evaluate the accuracy of each of the four methods in predicting body segment lengths. The results of the leave-one-out analysis showed that different prediction methods produced the best estimates for different body segment length measurements.
Technical Paper

Validation of Telemetry Data Acquisition Using GoPro Cameras

2020-04-14
2020-01-0875
Several GoPro camera models contain Global Positioning System (GPS), accelerometer, and gyroscope instrumentation and are capable of measuring and recording position, velocity, acceleration, and inertial data. This study evaluates the accuracy of data obtained from GoPro cameras through a series of controlled tests. A test vehicle was instrumented with a Racelogic VBOX data acquisition unit as well as various generations of GoPro camera units equipped with GPS capability and driven on a road course. The raw data collected with the GoPro cameras and the translations of this data provided by the GoPro Quik desktop software application were compared to data collected with the validated VBOX data acquisition unit. The results demonstrated that position, velocity, and acceleration data recorded with GoPro cameras is consistent with VBOX data and is useful for applications related to accident reconstruction.
Technical Paper

Coefficient of Restitution and Collision Pulse Duration in Low-Speed Vehicle-to-Barrier Impacts

2023-04-11
2023-01-0624
The coefficient of restitution is utilized in various methods for determining the change in velocity (delta-V) associated with a vehicle collision event. Additionally, for a given delta-V, the magnitude of vehicle acceleration varies with different collision pulse durations. Collision restitution and duration parameters are thus considered by both accident reconstructionists and biomechanists in the investigation of vehicle collision severity and occupant injury potential. Because of the uniqueness of individual vehicle designs, it is difficult to determine a collision’s specific coefficient of restitution and crash pulse duration. Accident reconstructionists often estimate the values of these parameters based on staged crash tests. Prior studies involving low-speed collisions have sought to determine correlations between restitution and collision characteristics and have established equations to assist in estimating restitution.
X