Refine Your Search

Topic

Search Results

Technical Paper

Life Support Concept in Lunar Base

1991-07-01
911431
Lunar base construction study has been conducted under the sponsorship of many Japanese industries to amend the man tended lunar outpost study carried by NASDA. Permanent lunar base construction is to be constrained by the ability of the usable transportation system carrying the basic modules composing lunar base itself. Based upon the experiences of Antarctic Research Expedition and of designing International Space Station now going on it was assumed the initial permanent lunar base has to be composed of two habitats and one power module for letting possible to alive 8 crews, and has to be expanded by adding three or four modules in every year for improving the easiness of livingness. In early stage of construction, crew members have to live and work using only two habitat modules with getting the electric power from power module, therefore the minimum self support functions except the food and oxygen supplying have to be attached to the habitat modules.
Technical Paper

Material Circulation Analysis of CEEF Through Simulation

1997-07-01
972297
The closed ecology experiment facilities(CEEF) are comprised of an animal breeding & habitation module, plant module, and a geo-hydrosphere module(currently being established), which are composed of physicochemical devices to allow almost all the material to be circulated. Partial test operations are now in progress with these kinds of equipment, and cooperative operations between an animal breeding & habitation module and plant module are expected to be started in the near future. Balance of the material and equipment performance as the whole of the system are being tested, and material circulation in a variety of operation modes is being examined. Keeping such a situation in mind, analysis is made in this report for material circulation in the plant module by itself for operations based on the equipment design data.
Technical Paper

Experimental Study on Ammonia and Ammonium Nitrate Production System in a Closed Ecological Experiment Facility

1997-07-01
972518
In CEEF(Closed Ecological Experiment Facility) which is the first Japanese CELSS experiment facility, the ammonia and ammonium nitrate production system is a nitrogen fixation system as a part of nitrogen circulation system. Nitrogen and water which are input materials to the system are processed to produce ammonia water and ammonium nitrate solution as raw materials of fertilizer for plant cultivation. The design basis of the system is to convert 125g/day of nitrogen to ammonia and ammonium nitrate based on the amount of one person's metabolism. Experiment of the system has been carried out and we have studied characteristics of the system.
Technical Paper

Outline of Material Circulation — Closed Habitation Experiments Conducted in 2005 – 2007 Using Closed Ecology Experiment Facilities

2009-07-12
2009-01-2580
The Closed Ecology Experiment Facilities (CEEF) were installed to collect data for estimation of transfer of radionuclides from atmosphere to humans in the ecosystem. The first target among the radio-nuclides is 14C. In order to validate function of material circulation in an experimental system constructed in the CEEF, circulation of air constituents, water and materials in waste was demonstrated connecting the Closed Plant Experiment Facility (CPEF) and the Closed Animal and Human habitation Experiment Facility (CAHEF) of the CEEF, since 2005 to 2007. The CPEF has a Plant Cultivation Module (PCM), which comprises of three plant chambers illuminated solely by artificial lighting, one plant chamber illuminated by both natural and artificial lighting, a space for preparation, and an airlock, and a physical/chemical material circulation system.
Technical Paper

A Simulation Model for the CEEF Behavioral Prediction System

2003-07-07
2003-01-2547
For validation of operation schedules for the Closed Ecology Experiment Facilities (CEEF), development of the CEEF behavioral prediction system (CPS) has been started. The CPS will be simulated using the CEEF operation schedule. The CPS will gather data on quantities of materials in each component of the CEEF and operational status of each component at the start of the simulation, and configure them as the initial conditions of the simulation. For requirements of experiments, the simulation program for the CPS should be easy to adapt for changes of components and object materials. Because the CEEF is a nonlinear system, available period of the simulation is important. A flexible algorithm for the changes was developed. The simulation was available for three days to validate.
Technical Paper

Simulation to Support an Integration Test Project of CEEF

2001-07-09
2001-01-2130
A simulation of an open mode system experiment was run using the same experimental conditions as an integration test conducted from September 1999 to February 2000 using the Closed Plant Experiment Facility at the Institute for Environmental Sciences in order to evaluate the operation of closed mode system to be conducted in future. Operation of the open mode system experiment required a supply of water and carbon dioxide from the outside, and the discharge of nutrient waste water and oxygen. The present simulation verified the feasibility of using non-integrated wet-oxidation processor, nutrient synthesis unit and nutrient waste water processor connected within a closed mode system, and it was confirmed that sufficient material circulation could be achieved when rice and soybeans were divided into six beds with different growing stages to facilitate control of the nutrient solution.
Technical Paper

Water Recycling System for CELSS Environment in Space

1990-07-01
901208
System configurations of water recycling for space use have been continued through theoretical and experimental studies. The water recycling system plays a central role in a Closed Ecological Life Support System (CELSS) which offers necessary environment and life styles in closed environment such as space stations, lunar bases, etc.. Membrane technology is a possible candidate for purifying waste water produced by crew use facility, plant cultivation facility, etc. In considerations of the system compactness realizing energy saving, membrane distillation has been revealed to be a suitable purification process. Ground experiments has been performed using membrane filtration processes and membrane distillation process. Thermopervaporation technology with hydrophobic membrane is utilized in the distillation process. The energy saving is achieved by thermal return of condensation energy.
Technical Paper

Simulation Model for the Closed Animal and Habitation Experiment Facility of CEEF

2006-07-17
2006-01-2125
Closure experiments will be conducted using the Closed Plant Experiment Facility (CPEF) and the Closed Animal and Habitation Experiment Facility (CAHEF) of the Closed Ecology Experiment Facilities (CEEF). The CEEF behavioral Prediction System (CPS) has been developed to check the CEEF operation for the closure experiments in advance. For the development of CPS, a simulation program for CPEF had been developed and reported. A simulation program for CAHEF was developed, and combined with the simulation program for CPEF. This integrated simulation program was validated by data obtained from a habitation experiment conducted in CEEF.
Technical Paper

Material Circulations in a Closed System

1993-07-01
932289
Materials circulating in a closed ecological system are classified as metabolic ones and nonmetabolic ones. Nonmetabolic substances relate to environment constituents and cultural activities. Treatment of these materials are discussed from a view point of CELSS concept. The closed system, CEEF, will be constructed in Japan in the near future. CEEF is an experiment facility with processing capacity of two adult persons, consisting of a plant module, an animal module, a habitat module and supporting facilities for the three modules. The supporting facilities are composed of artificial processors of gases, waters and wastes. The plant module has artificial and natural lighting cultivating sections.
Technical Paper

A Trade Study Method for Determining the Design Parameter of CELSS Subsystems

1992-07-01
921198
Developments of many subsystems, such as gas separater, water purifier, decomposition unit of waste materials and others, are necessary to construct the closed loop life support test facility for studying the material circulationin earth environment and for human habitation in space. On the other hand, in order to develop and integrate these subsystems infacility, the designing paramaters of each subsystem are to be determined based on the required material flows estimation. The required material flows are very complicated and difficult to be analyzed. Therefore the trade study method for determining the design paramaters of each subsystem is to be integrated based on the break down of system configulation Level as below. Level-0 is the material flow level between the total closed loop life support facility and outside. Level-1 is the material flow level between the plantation, habitat and animal breeding modules and their supporting systems.
Technical Paper

Concept of Waste Transferring Mechanisms

1992-07-01
921239
Recycling human and animal excreta is an important part of the proposed Closed Ecology Experiment Facility (CEEF) in Japan. This paper introduces a conceptual design for the waste collection and transfer system. Mineral-rich wastes such as urine and wool grease must be separated from other wastes to recover the minerals. Solids and liquids also require separate handling methods. Our design uses inclined conveyer belts to separate feces and urine. A fluorocarbon polymer coating prevents wastes from sticking to the belt. In-line freezers are used to solidify liquid wastes and retard premature decomposition. A summary of available data on animal excreta is included, but there is a distinct shortage of useful information. This data is insignificant for usual biology or animal husbandry, but is essential for designing the self-contained environment.
Technical Paper

TRACE CONTAMINANTS CONTROL ASSEMBLY DEVELOPMENT FOR THE JAPANESE CLOSED ECOLOGY EXPERIMENT FACILITIES

1994-06-01
941446
In the closed environments such as manned space station, it is necessary to remove contaminant gas to keep a suitable environment. Removal of gaseous contaminants generated from crew, animals, and plants is important function to keep the environment below the allowable level in the Closed Ecology Experiment Facilities (abbreviated as CEEF). CEEF consist of three modules for habitat, animal and plant, the supporting facilities for each module and a plant cultivation facility. CEEF are scheduled to be constructed from 1994 in Aomori Prefecture, northern part of Japan. For designing Trace Contaminant Control Assembly (TCCA) for CEEF, the following six (6) trace contaminants have been selected as major contaminant gas in CEEF; Ammonia (NH3) Methane (CH4) Ethylene (C2H4) Carbon Monoxide (CO) Nitrogen Dioxide (NO2) Sulfur Dioxide (SO2) Ethylene is well-known as an aggressive contaminant to plant growth and maturity.
Technical Paper

Mineral Recovery System in a CEEF

1994-06-01
941499
We propose a new recovery system for NaCl from human urine. The system has an electrodialysis (ED) part and a crystallization part. Separation and concentration characteristics of the system are discussed for fundamental experiments of the ED and crystallization parts. Concentrated NaCl-KCl mixed solution is obtained using the ED process from simulated oxidized urine and sweat which include Ca2+ and S042- ions. Then, the crystallization process is used to separate about 80% of the NaCl from the ED treated solution. The experimental studies indicate that the mineral recovery system we proposed can recover NaCl from waste water of a CEEF.
Technical Paper

Experimental Study of Nitrogen Fixation System in a Closed Ecological System

1994-06-01
941409
Nitrogen Fixation Systems(NFS) suitable for plant cultivation in a closed environment have been studied through experimental verification. The system is composed of physico-chemical processes only. Nitrogen gas and water are fed into the system as raw materials,and ammonia and ammonium nitrate solution are produced as final products, which are utilized as main fertilizers in plant cultivation. Each elemental chemical process in NFS is selected with regard to unique design criteria concerning safety, energy effectiveness, compactness and reliability. An experimental apparatus for important unit processes has been made for the purpose of verifying process data. A detail design for nitrogen fixation facilities, planned for construction as the first Japanese CELSS laboratory, was carried out.
Technical Paper

Material Flow Simulation Software for CEEF: Closed Ecology Experiment Facilities

1995-07-01
951537
IES (Institute for Environmental Sciences) is now constructing CEEF at Rokkasho, Aomori, Japan. The simulation for material flow is made based on a system model of CEEF, which includes one person and 7 plant species of Rice, Soybean, Komatsuna, Sesame, Tomato, Potato and Buckwheat. In this simulation software, plants, human and their support systems are mathematically defined and material flows such as O2, N2, CO2, waters, fertilizers and organic matters are computed. This software simulates only material flow and but does not simulate thermal dynamics of the environment. The simulation result showed reasonable material flows in a closed system.
Technical Paper

Simulation Software of Material Circulation in a CEEF: Closed Ecology Experiment Facility

1996-07-01
961500
A conceptual study for a computational simulator of material circulation in a CEEF was performed. CELSS such as the CEEF (Closed Ecology Experiment Facility) which is under construction in the Institute for Environmental Sciences have many physico-chemical devices. To simplify their programming, many physico-chemical devices were classified into several function groups using C++, a specially designed programming language to support the object oriented programming technique. Based on the classifications, the simulation software was made and the simulation was performed. The simulation results predict that stable operation of CEEF can be obtained.
Technical Paper

A Mathematical Model on Physiological Processes of Candidate Crops in CEEF

1996-07-01
961499
A mathematical model was developed in order to predict quantities of CO2 and O2 gas exchange, transpiration, biomass production, food production and nutrient absorption by candidate crops in Closed Ecology Experiment Facilities (CEEF) in which material recycling in a controlled ecological life support system (CELSS) is to be made. This model includes effects of physical parameters such as light intensity, air temperature, humidity and atmospheric CO2 concentration on these processes and plant aging effect on these processes. Using results from experiments in which candidate crops were grown under controlled environment and data from literature, mathematical models for each crop was given physiological parameters. Then, changes in biomass and food accumulation, gas exchange and transpiration of each crop with time were calculated.
Technical Paper

Performance Test Data of Wet Oxidation Plant for CEEF - CEEF: Controlled Ecology Experiment Facilities

1996-07-01
961558
This waste management process must be capable of treating the various wastes generated within Controlled Ecology Experiment Facilities (CEEF) and operate effectively in and environment in which carbon, oxygen, nitrogen, salts, and other important minerals, exit. The catalytic Wet Oxidation Process (W/O Process) is regarded to be the most feasible candidate process for such waste management. This paper clarifies the performance data and the design data of the actual device. By applying these comparison data, for example, water balance, insoluble part balance, organic part balance, and inorganic balance for CEEF, we were also able to confirm the usefulness and applicability of the actual Wet Oxidation Device.
Technical Paper

Nitrogen Fixation System as a CELSS Subsystem for CEEF

1996-07-01
961418
The Nitrogen Fixation System (NFS) which produces ammonia and nitric acid from nitrogen and water has been developed. The NFS is one essential part of material circulation system of the CEEF (Closed Ecological Experiment Facility) the first Japanese CELSS experiment facility. Basically, physico-chemical and some new technologies are utilized as elemental processes in the NFS. Low pressure ammonia synthesis, ammonia enrichment with PSA and water electrolysis with SPE are such new technologies. We designed and installed the NFS as a subsystem of CEEF. The capacity of the NFS is 125g/day as fixed nitrogen. First operation of NFS is expected to be done early fiscal year of 1996 in CEEF.
Technical Paper

Estimation of Water Circulation Based on Experimental Results from Sequential Crop Cultivation, Closed Goat Breeding and Simulated Habitation Using CEEF

2004-07-19
2004-01-2349
Closed habitation experiments are to be carried out using Closed Ecology Experiment Facilities (CEEF) from FY2005 to FY2009. The last target of duration of closed habitation is four months. Preliminary study and testing have been conducted in order to carry out the closed habitation experiments. The CEEF has three closed plantation chambers (PC-A, B and C) with artificial lighting solely having each cultivation area of 30 m2 and a closed plantation chamber (PC-F) with both natural lighting and supplemental artificial lighting having a 60-m2 cultivation area. A ‘stable’ period of sequential crop cultivation was maintained for four weeks in a trial experiment conducted in FY2003 using the Plantation Module (PM), in which rice, soybean and crops including rice sapling, soybean sapling, soybean, peanuts and safflower were cultivated in PC-A, PC-B, PC-C and PC-F, respectively. Amount of total clean water input to PM was 741 L day−1 on the average for the period.
X