Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Tail Pipe Emission Study of an Aged Exhaust after Treatment System for 3.8 Litre Diesel Engine

2021-09-22
2021-26-0215
With implementation of stringent BSVI emission norms and regulations like OBD-II on vehicle, it is essential to define the life of exhaust after treatment along with the vehicle. Diesel after treatment generally consists of DOC, DPF and SCR. Lubricating oil contains phosphorus and zinc which adversely affect the DOC. Unburned hydrocarbons (UNHBC) and SOF in tail pipe get accumulated in the DPF. This requires regeneration process where in, high temperatures in exhaust after treatment (EATS) burn the adsorbed Sulphur or phosphorus, thereby improving the conversion efficiencies. Repeated regenerations lead to ash accumulation in DPF and this reduces its capability for soot accumulation. Sulphur in the exhaust impacts SCR through NOx conversion. The present study analyzes the effect of (1) Chemical aging (2) Thermal aging on 3.77 liter diesel engine after treatment. A test cycle was prepared to run the durability for EATS.
Technical Paper

Comparative Study of DOC Volume and PGM Loading on Exotherm and HC Slip during Active DPF Regeneration

2021-09-22
2021-26-0207
The diesel oxidation catalyst (DOC) is one of the major components of a diesel after treatment system. Earlier, DOCs were majorly used to oxidise un-burnt HC and CO from the exhaust gas to keep these pollutants within legislation limits. As legislative norms evolved towards becoming more stringent, the technology and chemistry of after-treatment catalysts have also advanced simultaneously. For Diesel Engines to meet BSVI emission norm, the DOC has a vital role to play. Apart from oxidizing un-burnt THC and CO, now it has to perform additional functions of converting NOx to NO2 to achieve desired NO2/NOx ratio for better DeNOx in the SCR and also give efficient exotherm across it when the cat burner fuel is injected during DPF Regeneration with minimal HC slip. In this paper, two DOCs having different PGM loadings and volumes are evaluated for their exothermal efficiencies and corresponding THC slips.
Technical Paper

Development of Air less Urea Dozing Architecture for Better Optimum Spray Characteristics and to Avoid Urea Crystallization

2017-07-10
2017-28-1927
The urea NOx selective catalytic reduction (SCR) is an effective technique for the reduction of NOx emitted from diesel engines. Urea spray quality has significant effect on NOx conversion efficiency. Air less injection is one of effective, less complex way of injecting urea spray into the Exhaust stream. Further with air less injection it become more challenging in an engine platform of ~3 to 4L where Exhaust mass flow and temperature are relatively less. The droplet diameter and velocity distribution of De-Nox system has taken as input along with Engine raw emission data for a numerical model. The atomization and evaporation of airless urea injection systems were modeled using computational fluid dynamics. The numerical model was validated by the experimental results.
Technical Paper

Temperature Based Model Approach to Optimize SCR Calibration for BSIV Norms

2016-03-27
2016-01-1733
An efficient after treatment technique is driven by the need to maintain strict emission norms for heavy-duty and medium-duty ground vehicles. SCR being an advanced active emission technology system for diesel engine, is one of the most cost-effective and fuel-efficient technologies available for complying with the stringent NOx emission legislations. The design of the SCR system involves catalyst selection, complex controller development like urea dosing strategy and the interaction between engine setup and after treatment system. For this purpose, the SCR model must be computationally efficient to evaluate the complete efficiency along with to take care for the NH3 slip also. The SCR model was prepared with respect to SCR inlet temperature and ratio of NOx and ammonia to study the behavior of NOx conversion efficiency keeping consideration of NH3 slip also required for optimizing the calibration.
Technical Paper

SCR Catalyst Volume Reduction of Vanadium for BSIV Emission Norms

2016-02-01
2016-28-0130
SCR being an advanced active emission technology system for diesel engine, is one of the most cost-effective and fuel-efficient technologies available for complying with the stringent NOx emission legislations. SCR catalyst volume is being considered as the most concerned part for NOx reduction and durability and a key element leading to high financial assessments. The SCR Optimization reduces the possibility of ammonia slip and leads to high NOx conversion rates. By improving the performance of the SCR, the optimization solution also reduces the amount of catalyst needed, thereby reducing associated costs. The decrease in SCR catalyst volume by 1m3 with respect to current set-up will lead to 15% reduction in the total cost of catalyst. All the factors affecting the SCR catalyst volume were focused in detail and the plausible range of catalyst volume was investigated by comparative measurement of these factors.
Technical Paper

A Study on the Factors Affecting the Formation of Urea Crystals and Its Mitigation for SCR After-Treatment Systems

2017-01-10
2017-26-0132
Selective Catalytic Reduction has established itself to significantly reduce NOx emissions from diesel engines. Typically, in this technology, aqueous urea solution is injected into hot exhaust stream which chemically decomposes to form ammonia and then reacts with NOx to form safe byproducts as H2O and N2 over the catalyst surface. However, incomplete thermal decomposition of urea not only reduces the NOx conversion efficiency and increases the ammonia slip, but also leads to the formation of solid crystals that adversely affect the performance of the system by increasing the back pressure and lowering the overall fuel economy. The present study discusses about the main reasons that lead to crystal formation in a vanadium based SCR system on a six cylinder 5.6l diesel engine and also design considerations of decomposition tube that affect the formation of crystals and ways to mitigate them.
X