Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Influence of Ignition Timing on the Exhaust Emissions of a Ford Escort Fuelled by Various Ethanol and Petrol Mixtures

2009-09-13
2009-24-0140
The influence of the ignition timing on the exhaust emissions of an old technology vehicle fuelled by various ethanol/petrol mixtures was investigated. All tests were carried out on a 1300cc Ford Escort equipped with a carburettor and without a catalytic converter. The reference petrol fuel E0 and the blends E10, E20 and E50 were used, at three different constant speeds of 30, 50 and 90 km/h, under full load with wide open throttle while the vehicle was on a chassis dynamometer. All measurements were taken at three different settings of the advance angle, at 0°, 4° and 12° BTDC. With the use of an exhaust gas analyser, the concentrations of CO, CO2, HC, O2 and NOX in the exhaust gases at the tailpipe were recorded. For the evaluation of the results the lambda value was calculated from the available recorded data. Changing the ignition timing, while using the blends E10, E20 and E50, had the same effects on the emissions as the reference fuel E0.
Technical Paper

Ignition Timing Impact on the Performance of an Old Technology Vehicle Fuelled by Ethanol/Petrol Blends

2009-06-15
2009-01-1968
The scope of this work was to study the impact of the ignition timing on the engine’s performance on an old technology vehicle fuelled by ethanol/petrol blends. Many previous studies have been published on the subject, but most of them were carried on SI engines using bench dynamometers. In this work, a 1.3 L Ford Escort equipped with a carburettor and without a catalytic converter was tested on a chassis dynamometer. Blends with ethanol concentrations of 10%, 20% and 50% per volume were used and the results were compared with the reference LRP fuel. All tests were performed at three different constant speeds of 30, 50 and 90 km/h, under full load with wide open throttle. Torque and rpm of the engine were recorded by the chassis dynamometer’s software. The fuel consumption was measured by means of the gravimetric method. All measurements were taken at three different settings of the advance angle, at 0°, 4° and 12° BTDC.
X