Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Characteristics Analyses of Innovative Crank-Lever Electromagnetic Damper for Suspension System of an Off-Road Vehicle

2021-06-02
Abstract In this article performance of the innovative Crank-Lever Electromagnetic Damper (CLEMD) for an off-road vehicle suspension system is analyzed. To determine the characteristic behavior of the CLEMD, the damping force it provides on the suspension system is varied by changing the values of the damping coefficient in the simulations. Various parameters considered in the analyses include power regenerated, voltage, current, comfort, road-holding, etc. The behavior of all the parameters of the CLEMD is observed for an off-road vehicle by carrying out simulations on country roads since the off-road vehicles are subjected to higher road irregularities and hence provide an opportunity to regenerate a higher amount of power. A two-dimensional (2-D) model of a vehicle developed in SimMechanics is interfaced with a Simulink model of CLEMDs for the analyses.
Journal Article

Thermal Energy Performance Evaluation and Architecture Selection for Off-Highway Equipment

2021-08-31
Abstract An accurate and rapid thermal model of an axle-brake system is crucial to the design process of reliable braking systems. Proper thermal management is necessary to avoid damaging effects, such as brake fade, thermal cracking, and lubricating oil degradation. In order to understand the thermal effects inside of a lubricated braking system, it is common to use Computational Fluid Dynamics (CFD) to calculate the heat generation and rejection. However, this is a difficult and time-consuming process, especially when trying to optimize a braking system. This article uses the results from several CFD runs to train a Stacked Ensemble Model (SEM), which allows the use of machine learning (ML) to predict the systems’ temperature based on several input design parameters. The robustness of the SEM was evaluated using uncertainty quantification.
Standard

Off-Road Self-Propelled Work Machines Operator enclosure environment Part 4:Heating, ventilating and air conditioning (HVAC) test method and performance

2014-09-16
WIP
J3078/4
J3078/4 specifies a uniform test method for measuring the contribution to operator environmental temperature provided by a heating, ventilating and air conditioning system operating in a specific ambient environment. The method might not determine the complete climatic environment of the operator since this is also affected by heat load from sources other than those on the machine, for example solar heating. J3708/6 is to be used in conjunction with J3078/4 to determine more accurately the complete heat loading on the operator enclosure. Minimum performance levels for the machine’s operator enclosure heating, ventilating and air conditioning systems are established in J3708/4.
Journal Article

Experimental and Analytical Evaluations of a Torsio-Elastic Suspension for Off-Road Vehicles

2010-04-12
2010-01-0643
The ride performance potentials of a prototype torsio-elastic axle suspension for an off-road vehicle were investigated analytically and experimentally. A forestry vehicle was fitted with the prototype suspension at its rear axle to assess its ride performance benefits. Field measurements of ride vibration along the vertical, lateral, fore-aft, roll and pitch axes were performed for the suspended and an unsuspended vehicle, while traversing a forestry terrain. The measured vibration responses of both vehicles were evaluated in terms of unweighted and frequency-weighted rms accelerations and the acceleration spectra, and compared to assess the potential performance benefits of the proposed suspension. The results revealed that the proposed suspension could yield significant reductions in the vibration magnitudes transmitted to the operator's station.
Journal Article

Effect of Terrain Roughness on the Roll and Yaw Directional Stability of an Articulated Frame Steer Vehicle

2013-09-24
2013-01-2366
Compared to the vehicles with conventional steering, the articulated frame steer vehicles (ASV) are known to exhibit lower directional and roll stability limits. Furthermore, the tire interactions with relatively rough terrains could adversely affect the directional and roll stability limits of an ASV due to terrain-induced variations in the vertical and lateral tire forces. It may thus be desirable to assess the dynamic safety of ASVs in terms of their directional control and stability limits while operating on different terrains. The effects of terrain roughness on the directional stability limits of an ASV are investigated through simulations of a comprehensive three-dimensional model of the vehicle with and without a rear axle suspension. The model incorporates a torsio-elastic rear axle suspension, a kineto-dynamic model of the frame steering struts and equivalent random profiles of different undeformable terrains together with coherence between the two tracks profiles.
Journal Article

Innovative Design of Tractor for Small and Marginal Farms Mechanisation

2015-01-14
2015-26-0072
Agriculture Tractors are widely used as prime mover either to pull or drive the “Implements” in the farms, apart from custom made equipments like Transplanter, Manure Spreader, Combine Harvester, Cotton Picker, mobile irrigation etc. which are used for particular operations in large production capacities. For larger landholdings, timely completion of the operation within the window period is the major decisive factor that drives agriculture tractor design. For small farms like in India, the productivity requirement was offset by the versatility of the equipment. Also, the farming practice varies in India due to geographical conditions such as soil types and demographic conditions such as crops types. Hence, the mechanisation level of matured market was not yet achieved in India, though the technologies are available for implementation.
Technical Paper

Multiphase Flow Simulation of the Oil Splashing during the Actuated Stage of an Innovative Axle Dry Braking System

2021-09-21
2021-01-1238
This paper proposes the CFD simulation of the oil splashing within the discs’ chamber of a novel concept for axle dry braking system in off-highway vehicles. The system completely removes the lubricating oil from the discs’ chamber during the not-engaged configuration of the friction plates and it quickly restore it at the beginning of the braking stage when the discs’ cooling becomes crucial, thus ensuring a significant reduction of the power losses. The CFD analysis of the real component is performed to predict the efficiency of the system in terms of both the time needed to replenish the discs’ chamber when brake is actuated, and the hydraulic torque exerted by the splashing of the oil. The entire three-dimensional geometry of the domain is accurately discretized, and the multi-phase flow nature is addressed by means of the volume of fluid approach.
Technical Paper

Prediction and Validation of Cab Noise in Agricultural Equipment

2021-08-31
2021-01-1070
To improve overall customer experience, it is imperative to minimize the noise levels inside agricultural equipment cab. Up-front prediction of acoustic performance in product development is critical to implement the noise control strategies optimally. This paper discusses the methodology used for virtual modeling of a cab on agricultural equipment for prediction of interior noise. The Statistical Energy Analysis (SEA) approach is suitable to predict high frequency interior noise and sound quality parameters such as articulation index and loudness. The cab SEA model is developed using a commercial software. The structural and acoustic excitations are measured through physical testing in various operating conditions. The interior noise levels predicted by the virtual model are compared with the operator ear noise levels measured in the test unit. The resultant SPL spectrum from SEA correlates well with the test.
Technical Paper

Parameter Optimization of Off-Road Vehicle Frame Based on Sensitivity Analysis, Radial Basis Function Neural Network, and Elitist Non-dominated Sorting Genetic Algorithm

2021-08-10
2021-01-5082
The lightweight design of a vehicle can save manufacturing costs and reduce greenhouse gas emissions. For the off-road vehicle and truck, the chassis frame is the most important load-bearing assembly of the separate frame construction vehicle. The frame is one of the most assemblies with great potential to be lightweight optimized. However, most of the vehicle components are mounted on the frame, such as the engine, transmission, suspension, steering system, radiator, and vehicle body. Therefore, boundaries and constraints should be taken into consideration during the optimal process. The finite element (FE) model is widely used to simulate and assess the frame performance. The performance of the frame is determined by the design parameters. As one of the largest components of the vehicle, it has a lot of parameters. To improve the optimum efficiency, sensitivity analysis is used to narrow the range of the variables.
Technical Paper

An Innovative Approach Towards Low-Emission (BS-IV) & Improved-Performance of Diesel Engine with Conventional Fuel Injection Equipment (Non-Electronic Injectors & E-Governed In-Line Pump)

2021-09-22
2021-26-0060
The conventional internal combustion engines continue to dominate many fields like transportation, agriculture and power generation. Moreover, apprehension over oil price restriction has created an unprecedented demand for fuel economy. Diesel engine is mostly preferred for its higher thermal efficiency, high-torque and outstanding longevity. In recent days with flooded technologies, Uniqueness and the Differentiation of Product play vital role for a successful business in Auto Industry. The present invention is related to the Challenges of Design & Development of Conventional Diesel Engine to meet the stringent emission & performance requirements (BS-IV) of Internal Combustion engines, and more particularly to achieve the targets with conventional Fuel Injection Systems (Non-electronic Fuel Injectors, In-Line Fuel Injection Pump-Governed Electronically) with required sub-systems on IC engine.
Technical Paper

Development of Dual Fuel (Diesel + CNG) Engine for Off-Road Application

2021-09-22
2021-26-0119
The evolution of engine technology has so far seen the most beneficial side of progress in the fields of transportation, agriculture, and mobility. With the advent of innovation, there is also an impact on our environment that needs to be balanced. This is where fuels like CNG, LPG, LNG, etc. outperform conventional fossil fuels in terms of pollution & operational cost. This paper enlightens on the use of innovative dual-fuel technology where diesel & CNG fuels are used for combustion simultaneously inside the combustion chamber. Dual fuel system adaptation for farm application ensures self-reliance of the farmer where he can generate Bio-CNG to use the renewable fuel for farming making him less dependent on conventional fossil fuel thus promoting a green economy. The dual-fuel system is adapted to the existing in-use diesel engine with minimum modifications. This makes it feasible to retrofit a CNG fuel system on an existing diesel engine to operate it on dual fuel mode.
Technical Paper

Development of an all Speed Governed Diesel-CNG Dual Fuel Engine for Farm Applications

2021-09-22
2021-26-0101
This paper discusses the development of an all speed governed diesel-natural gas dual fuel engine for agricultural farm tractor. A 45 hp, 2.9 liters diesel-natural gas dual fuel engine with a novel closed loop secondary fuel injection system was developed. A frugal approach without any modification of the base mechanical diesel fuel injection system was followed. This approach helped to minimize the cost impact, while meeting performance and emissions at par with neat diesel operation. Additional cost on gas injection system is redeemed by cost savings on diesel fuel. The dual fuel technology developed by Mahindra & Mahindra Ltd., substitutes on an average approximately 40% of diesel with compressed natural gas, meeting the TREM III A emission norms for dual fuel while meeting all application requirements. The governing performance of the tractor was found to be superior than base diesel tractor.
Technical Paper

Virtual Simulation Method to Predict Farm Tractor Durability Load Cycles for Proving Ground Tests

2021-09-22
2021-26-0097
Agriculture machinery industries have always relied on conventional product development process such as laboratory tests, accelerated durability track tests and field tests. Now a days the competitive nature seen in industry concerns need to enhance product quality, time to market and development cost. Utilization of Computer Aided Engineering (CAE) methods not only provide solution but also could play key role in tractor development process. The objective is to assess the performance of virtual simulation model of mid segment farm tractor using Multibody System Model (MBS) for predicting the durability loads on virtual proving ground test tracks. Multibody simulation software MSC ADAMS is used to develop a virtual tractor model. Durability test tracks and simulation is carried out as per company testing standards. Data measurement is done using Wheel Force Transducer (WFT) to study front and rear spindle forces and moments to evaluate the virtual model performance.
Technical Paper

Development of Sensor Based Rotavator Unit For Display of Operational Parameters on Various Soil Conditions

2021-09-22
2021-26-0091
Rotavator is an active tillage implement for breaking the Soil and for the preparation of seed bed for cultivation. The Farmers are currently facing problem due to usage of sub optimal speed of Rotavator which results in more fuel consumption, takes more time for completion of operation. Also, the Current Rental models work on Tractor + Implement as rental combination and customer not able to rent Rotavator as a standalone implement due to non-availability of Tracking information such as hours of utilization on Rotavator. Farmers not able to maintain the service periodicity, if oil change not done in prescribed duration then it may result in improper maintenance and breakdown of the Rotavator. To overcome these problems a smart Rotavator developed consists of an electronic unit fitted on the Rotavator shaft to measure the speed of the shaft rotation and in turn convert to Rotavator speed and also able to convert into Hours of usage based on the starting and stopping of the rotavator.
Technical Paper

Design and Development Methodology of Automatic Electric Start System for Power Tiller

2021-09-22
2021-26-0093
This paper deals with designing and development methodology of Automatic Electric Start (AES) system for power tiller, which has horizontal diesel engine as prime mover. Designing of AES system constitutes of designing of Starter Motor, Starter Motor Bracket, Flywheel Ring Gear, Battery, Wire Harness Circuit, Fan Alternator and then development these components as integrated system prototype. Unlike tractor market, AES system are not so common in Indian power tiller market therefore, unprecedented design approach towards design of AES system on power tiller engine has been presented in this paper. An engine without AES system requires of huge amount farmers physical effort for starting whereby farmers fatigue levels are always on higher side due to repeated starting task. AES system on power tiller has made 0 N force requirement to start engine which was approximately 92 N earlier.
Technical Paper

CFD Investigation of Exhaust Gas Bypass on Trolley Heating

2020-08-18
2020-28-0006
Most of the automobile and off-road vehicles leave the 100% exhaust gases to atmosphere. The temperature of the exhaust gas ranges from 350-400 deg C and the exit velocity of the gas is about 40-100 m/s based on the outlet pipe design. Dump trucks are used to transport mud, sticky waste garbage and sometime ice from one place to dump yard. The paper will describe the approach of partially use the exhaust gases for truck trolley by heating the trolley surfaces from the walls. CFD software is used to evaluate the exhaust system pressure drop and bypass exhaust flow rate requirements for effective heating on trolley wall. The simulation also helped to design the appropriate baffle position for optimum pressure drop and recirculation. Conjugate heat transfer CFD analysis is carried out to predict the flow & temperature behavior of the exhaust pipe.
X