Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Response and Tolerance of the Human Forearm to Impact Loading

1998-11-02
983149
With the widespread use of supplemental restraint systems (airbags), occasional rare injuries have occurred because of the force associated with these systems upon deployment. Recent case studies have demonstrated forearm fractures associated with airbag deployment. The present study was conducted to determine the tolerance of the human forearm under a dynamic bending mode. A total of 30 human cadaver forearm specimens were tested using three-point bending protocol to failure at 3.3 m/s and 7.6 m/s velocities. Results indicated significantly (p < 0.01) greater biomechanical parameters associated with males compared to females. The bending tolerance of the human forearm, however, was found to be most highly correlated to bone mineral density, bone area, and forearm mass. Thus, any occupant with lower bone mineral density and lower forearm geometry/mass is at higher risk. The mean failure bending moment for all specimens was 94 Nm.
Technical Paper

Thoracic Biomechanics with Air Bag Restraint

1993-11-01
933121
The objective of the present study was to determine the biomechanics of the human thorax in a simulated frontal impact. Fourteen unembalmed human cadavers were subjected to deceleration sled tests at velocities of nine or 13 m/s. Air bag - knee bolster, air bag - lap belt, and air bag - three-point belt restraint systems were used with the specimen positioned in the driver's seat. Two chest bands were used to derive the deformation patterns at the upper and lower thoracic levels. Lap and shoulder belt forces were recorded with seatbelt transducers. After the test, specimens were evaluated using palpation, radiography, and a detailed autopsy. Thoracic trauma was graded according to the Abbreviated Injury Scale based on autopsy findings. Peak thoracic deformations were normalized with respect to the initial chest depth to facilitate comparison between the specimens.
Technical Paper

Thoracic Trauma Assessment Formulations for Restrained Drivers in Simulated Frontal Impacts

1994-11-01
942206
Sixty-three simulated frontal impacts using cadaveric specimens were performed to examine and quantify the performance of various contemporary automotive restraint systems. Test specimens were instrumented with accelerometers and chest bands to characterize their mechanical responses during the impact. The resulting thoracic injury severity was determined using detailed autopsy and was classified using the Abbreviated Injury Scale. The ability of various mechanical parameters and combinations of parameters to assess the observed injury severities was examined and resulted in the observation that belt restraint systems generally had higher injury rates than air bag restraint systems for the same level of mechanical responses. To provide better injury evaluations from observed mechanical parameters without prior knowledge of what restraint system was being used, a dichotomous process was developed.
Technical Paper

Three-Year-Old Child Out-Of-Position Side Airbag Studies

1999-10-10
99SC03
A series of twenty-nine tests was completed by conducting static deployment of side airbag systems to an out-of-position Hybrid III three-year-old dummy. Mock-ups (bucks) of vehicle occupant compartments were constructed. The dummy was placed in one of four possible positions for both door- and seat-mounted side airbag systems. When data from each type of position test were combined for the various injury parameters it was noted that the head injury criteria (HIC) were maximized for head and neck tests, and the chest injury parameters were maximized for the chest tests. For the neck injury parameters, however, all of the test positions produced high values for at least one of the parameters. The study concluded the following. Static out-of- position child dummy side airbag testing is one possible method to evaluate the potential for injury for worst-case scenarios. The outcome of these tests are sensitive to preposition and various measurements should be made to reproduce the tests.
Technical Paper

Biomechanical and Injury Response to Posterolateral Loading From Torso Side Airbags

2010-11-03
2010-22-0012
This study characterized thoracoabdominal response to posterolateral loading from a seat-mounted side airbag. Seven unembalmed post-mortem human subjects were exposed to ten airbag deployments. Subjects were positioned such that the deploying airbag first contacted the posterolateral thorax between T6 and L1 while stationary (n = 3 x 2 aspects) or while subjected to left lateral sled impact at ΔV = 6.7 m/s (n = 4). Chestband contours were analyzed to quantify deformation direction in the thoracic x-y plane (zero degrees indicating anterior and 180° indicating posterior), magnitude, rate, and viscous response. Skeletal injuries were consistent with posterolateral contact; visceral injuries consisted of renal (n = 1) or splenic (n = 3) lacerations. Deformation direction was transient during sled impact, progressing from 122 ± 5° at deformation onset to 90° following maximum deflection. Angles from stationary subjects progressed from 141 ± 9° to 120°.
X