Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Instantaneous Engine Speed Measurement and Processing for MFB50 Evaluation

2009-11-02
2009-01-2747
Evaluation of MFB50 is very useful for combustion control, since it gives an evaluation of the combustion process effectiveness. Real-time monitoring its value enables to detect for example the kind of combustion that is taking place (useful for example for HCCI applications), or could provide important information to improve real-time combustion control. While it is possible to determine the position where the 50% of mass burned inside the cylinder is reached using an in-cylinder pressure sensor, this work proposes to obtain this information from the engine speed fluctuation measurement. In-cylinder pressure sensors in fact are still not so common for on-board applications, since their cost will constitute an important portion of the whole engine control system cost.
Technical Paper

Common Rail Multi-Jet Diesel Engine Combustion Development Investigation for MFB50 On-board Estimation

2010-10-25
2010-01-2211
Proper design of the combustion phase has always been crucial for Diesel engine control systems. Modern engine control strategies' growing complexity, mainly due to the increasing request to reduce pollutant emissions, requires on-board estimation of a growing number of quantities. In order to feedback a control strategy for optimal combustion positioning, one of the most important parameters to estimate on-board is the angular position where 50% of fuel mass burned over an engine cycle is reached (MFB50), because it provides important information about combustion effectiveness (a key factor, for example, in HCCI combustion control). In modern Diesel engines, injection patterns are designed with many degrees of freedom, such as the position and the duration of each injection, rail pressure or EGR rate. In this work a model of the combustion process has been developed in order to evaluate the energy release within the cylinder as a function of the injection parameters.
Technical Paper

Development and Validation of a Methodology for Real-Time Evaluation of Cylinder by Cylinder Torque Production Non-Uniformities

2011-09-11
2011-24-0145
Modern internal combustion engine control systems require on-board evaluation of a large number of quantities, in order to perform an efficient combustion control. The importance of optimal combustion control is mainly related to the requests for pollutant emissions reduction, but it is also crucial for noise, vibrations and harshness reduction. Engine system aging can cause significant differences between each cylinder combustion process and, consequently, an increase in vibrations and pollutant emissions. Another aspect worth mentioning is that newly developed low temperature combustion strategies (such as HCCI combustion) deliver the advantage of low engine-out NOx emissions, however, they show a high cylinder-to-cylinder variation. For these reasons, non uniformity in torque produced by the cylinders in an internal combustion engine is a very important parameter to be evaluated on board.
X