Refine Your Search

Topic

Author

Search Results

Journal Article

Effects of Different Type of Gasoline Fuels on Heavy Duty Partially Premixed Combustion

2009-11-02
2009-01-2668
The effects of fuel properties on the performance and emissions of an engine running in partially premixed combustion mode were investigated using nine test fuels developed in the gasoline boiling point range. The fuels covered a broad range of ignition quality and fuel chemistry. The fuels were characterized by performing a load sweep between 1 and 12 bar gross IMEP at 1000 and 1300 rpm. A heavy duty single cylinder engine from Scania was used for the experiments; the piston was not modified thus resulting in the standard compression ratio of 18:1. In order to properly run gasoline type of fuels in partially premixed combustion mode, an advanced combustion concept was developed. The concept involved using a lot of EGR, very high boost and an advanced injection strategy previously developed by the authors. By applying this concept all the fuels showed gross indicated efficiencies higher than 50% with a peak of 57% at 8 bar IMEP.
Journal Article

Study of the Early Flame Development in a Spark-Ignited Lean Burn Four-Stroke Large Bore Gas Engine by Fuel Tracer PLIF

2014-04-01
2014-01-1330
In this work the pre- to main chamber ignition process is studied in a Wärtsilä 34SG spark-ignited lean burn four-stroke large bore optical engine (bore 340 mm) operating on natural gas. Unburnt and burnt gas regions in planar cross-sections of the combustion chamber are identified by means of planar laser induced fluorescence (PLIF) from acetone seeded to the fuel. The emerging jets from the pre-chamber, the ignition process and early flame propagation are studied. Measurements reveal the presence of a significant temporal delay between the occurrence of a pressure difference across the pre-chamber holes and the appearance of hot burnt/burning gases at the nozzle exit. Variations in the delay affect the combustion timing and duration. The combustion rate in the pre-chamber does not influence the jet propagation speed, although it still has an effect on the overall combustion duration.
Journal Article

Combustion Stratification with Partially Premixed Combustion, PPC, using NVO and Split Injection in a LD - Diesel Engine

2014-10-13
2014-01-2677
Partially Premixed Combustion (PPC) is used to meet the increasing demands of emission legislation and to improve fuel efficiency. PPC with gasoline fuels have the advantage of a longer premixed duration of fuel/air mixture which prevents soot formation at higher loads. The objective of this paper is to investigate the degree of stratification for low load (towards idle) engine conditions using different injection strategies and negative valve overlap (NVO). The question is, how homogenous or stratified is the partially premixed combustion (PPC) for a given setting of NVO and fuel injection strategy. In this work PRF 55 has been used as PPC fuel. The experimental engine is a light duty (LD) diesel engine that has been modified to single cylinder operation to provide optical access into the combustion chamber, equipped with a fully variable valve train system. Hot residual gases were trapped by using NVO to dilute the cylinder mixture.
Technical Paper

Computational Investigation of the Effects of Injection Strategy and Rail Pressure on Isobaric Combustion in an Optical Compression Ignition Engine

2021-09-05
2021-24-0023
The high-pressure isobaric combustion has been proposed as the most suitable combustion mode for the double compre4ssion expansion engine (DCEE) concept. Previous experimental and simulation studies have demonstrated an improved efficiency compared to the conventional diesel combustion (CDC) engine. In the current study, isobaric combustion was achieved using a single injector with multiple injections. Since this concept involves complex phenomena such as spray to spray interactions, the computational models were extensively validated against the optical engine experiment data, to ensure high-fidelity simulations. The considered optical diagnostic techniques are Mie-scattering, fuel tracer planar laser-induced fluorescence (PLIF), and natural flame luminosity imaging. Overall, a good agreement between the numerical and experimental results was obtained.
Technical Paper

Experimental Study on Knock Mechanism with Multiple Spark Plugs and Multiple Pressure Sensors

2020-09-15
2020-01-2055
Engine knock is an abnormal phenomenon, which places barriers for modern Spark-Ignition (SI) engines to achieve higher thermal efficiency and better performance. In order to trigger more controllable knock events for study while keeping the knock intensity at restricted range, various spark strategies (e.g. spark timing, spark number, spark location) are applied to investigate on their influences on knock combustion characteristics and pressure oscillations. The experiment is implemented on a modified single cylinder Compression-Ignition (CI) engine operated at SI mode with port fuel injection (PFI). A specialized liner with 4 side spark plugs and 4 pressure sensors is used to generate various flame propagation processes, which leads to different auto-ignition onsets and knock development. Based on multiple channels of pressure signals, a band-pass filter is applied to obtain the pressure oscillations with respect to different spark strategies.
Technical Paper

Simultaneous Negative PLIF and OH* Chemiluminescence Imaging of the Gas Exchange and Flame Jet from a Narrow Throat Pre-Chamber

2020-09-15
2020-01-2080
Pre-chamber combustion (PCC) is a promising engine combustion concept capable of extending the lean limit at part load. The engine experiments in the literature showed that the PCC could achieve higher engine thermal efficiency and much lower NOx emission than the spark-ignition engine. Improved understanding of the detailed flow and combustion physics of PCC is important for optimizing the PCC combustion. In this study, we investigated the gas exchange and flame jet from a narrow throat pre-chamber (PC) by only fueling the PC with methane in an optical engine. Simultaneous negative acetone planar laser-induced fluorescence (PLIF) imaging and OH* chemiluminescence imaging were applied to visualize the PC jet and flame jet from the PC, respectively. Results indicate a delay of the PC gas exchange relative to the built-up of the pressure difference (△ P) between PC and the main chamber (MC). This should be due to the gas inertia inside the PC and the resistance of the PC nozzle.
Journal Article

Double Compression Expansion Engine Concepts: A Path to High Efficiency

2015-04-14
2015-01-1260
Internal combustion engine (ICE) fuel efficiency is a balance between good indicated efficiency and mechanical efficiency. High indicated efficiency is reached with a very diluted air/fuel-mixture and high load resulting in high peak cylinder pressure (PCP). On the other hand, high mechanical efficiency is obtained with very low peak cylinder pressure as the piston rings and bearings can be made with less friction. This paper presents studies of a combustion engine which consists of a two stage compression and expansion cycle. By splitting the engine into two different cycles, high-pressure (HP) and low-pressure (LP) cycles respectively, it is possible to reach high levels of both indicated and mechanical efficiency simultaneously. The HP cycle is designed similar to today's turbo-charged diesel engine but with an even higher boost pressure, resulting in high PCP. To cope with high PCP, the engine needs to be rigid.
Technical Paper

Validation of Computational Models for Isobaric Combustion Engines

2020-04-14
2020-01-0806
The focus of this study is to aid the development of the isobaric combustion engine by investigating multiple injection strategies at moderately high pressures. A three-dimensional (3D) commercial computational fluid dynamics (CFD) code, CONVERGE, was used to conduct simulations. The validation of the isobaric combustion case was carried out through the use of a single injector with multiple injections. The computational simulations were matched to the experimental data using methods outlined in this paper for different multiple injection cases. A sensitivity analysis to understand the effects of different modeling components on the quantitative prediction was carried out. First, the effects of the kinetic mechanisms were assessed by employing different chemical mechanisms, and the results showed no significant difference in the conditions under consideration.
Technical Paper

Effects of Geometry on Passive Pre-Chamber Combustion Characteristics

2020-04-14
2020-01-0821
Towards a fundamental understanding of the ignition characteristics of pre-chamber (PC) combustion engines, computational fluid dynamics (CFD) simulations were conducted using CONVERGE. To assist the initial design of the KAUST pre-chamber engine experiments, the primary focus of the present study was to assess the impact of design parameters such as throat diameter, nozzle diameter, and nozzle length. The well-stirred reactor combustion model coupled with a methane oxidation mechanism reduced from GRI 3.0 was used. A homogeneous charge of methane and air with λ = 1.3 on both the PC and main chamber (MC) was assumed. The geometrical parameters were shown to affect the pre-chamber combustion characteristics, such as pressure build-up, radical formation, and heat release as well as the composition of the jets penetrating and igniting the main chamber charge. In addition, the backflow of species pushed inside the pre-chamber due to the flow reversal (FR) event was analyzed.
Technical Paper

A Numerical Study on the Ignition of Lean CH4/Air Mixture by a Pre-Chamber-Initiated Turbulent Jet

2020-04-14
2020-01-0820
To provide insights into the fundamental characteristics of pre-chamber combustion engines, the ignition of lean premixed CH4/air due to hot gas jets initiated by a passive narrow throated pre-chamber in a heavy-duty engine was studied computationally. A twelve-hole pre-chamber geometry was investigated using CONVERGETM software. The numerical model was validated against the experimental results. To elucidate the main-chamber ignition mechanism, the spark plug location and spark timing were varied, resulting in different pressure gradient during turbulent jet formation. Different ignition mechanisms were observed for turbulent jet ignition of lean premixed CH4/air, based on the geometry effect. Ignition behavior was classified into the flame and jet ignition depending on the significant presence of hot active radicals. The jet ignition, mainly due to hot product gases was found to be advanced by the addition of a small concentration of radicals.
Technical Paper

Effect of Pre-Chamber Enrichment on Lean Burn Pre-Chamber Spark Ignition Combustion Concept with a Narrow-Throat Geometry

2020-04-14
2020-01-0825
Pre-chamber spark ignition (PCSI) combustion is an emerging lean-burn combustion mode capable of extending the lean operation limit of an engine. The favorable characteristic of short combustion duration at the lean condition of PCSI results in high efficiencies compared to conventional spark ignition combustion. Since the engine operation is typically lean, PCSI can significantly reduce engine-out NOx emissions while maintaining short combustion durations. In this study, experiments were conducted on a heavy-duty engine at lean conditions at mid to low load. Two major studies were performed. In the first study, the total fuel energy input to the engine was fixed while the intake pressure was varied, resulting in varying the global excess air ratio. In the second study, the intake pressure was fixed while the amount of fuel was changed to alter the global excess air ratio.
Journal Article

Closed-Loop Combustion Control for a 6-Cylinder Port-Injected Natural-gas Engine

2008-06-23
2008-01-1722
High EGR rates combined with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy duty spark ignition engines. With stoichiometric conditions a three way catalyst can be used which means that regulated emissions can be kept at very low levels. Obtaining reliable spark ignition is difficult however with high pressure and dilution. There will be a limit to the amount of EGR that can be tolerated for each operating point. Open loop operation based on steady state maps is difficult since there is substantial dynamics both from the turbocharger and from the wall heat interaction. The proposed approach applies standard closed loop lambda control for controlling the overall air/fuel ratio for a heavy duty 6-cylinder port injected natural gas engine. A closed loop load control is also applied for keeping the load at a constant level when using EGR.
Technical Paper

Narrow-Throat Pre-Chamber Combustion with Ethanol, a Comparison with Methane

2020-09-15
2020-01-2041
With increasingly stringent emissions regulations, the use of pre-chamber combustion systems is gaining popularity in Internal Combustion Engines (ICE). The advantages of pre-chambers are well established, such as improving fuel economy by increasing the lean limit and reducing emissions, particularly NOX. In pre-chamber combustion, flame jets shoot out from the pre-chamber orifices into the main chamber, generating several ignition points that promote a rapid burn rate of the lean mixture (excess-air ratio (λ) >1) in the main chamber. This work studies the effects of using two different fuels in the main chamber and assesses the lean limit, the combustion efficiency (ηc), and the emissions of a single-cylinder heavy-duty engine equipped with a narrow-throat active pre-chamber. Ethanol (C2H5OH) was tested in the main chamber while keeping the pre-chamber fueled with methane (CH4), and the results were then compared to using methane as the sole fuel.
Technical Paper

Flame Reconstruction in Spark Ignition Engines

1997-10-01
972825
The present paper aims at discussing the flow/flame interaction in a lean burn spark ignition engine. The mean velocity and cycle resolved turbulence are measured with laser Doppler velocimetry. The cylinder pressure is recorded and a one-zone heat release calculation performed. The very early part of flame propagation is measured using two orthogonal Schlieren systems, each capturing one image of the progressing flame at a given time after spark onset. The two resulting 2D images are then, after preprocessing, used to reconstruct the three-dimensional flame. The volume of the true flame is estimated by simulating, using Markov Chain Monte Carlo techniques, a number of possible flames that are consistent with the projections on the images. The uncertainty of the estimated flame volume is given by the variation of the volume estimates. In the calculations, the volume of that part of the spark plug that is inside the flame is subtracted.
Technical Paper

Wavelet Analysis of In-Cylinder LDV Measurements and Correlation Against Heat-Release

1998-02-23
980483
Wavelet analysis was used to calculate turbulence and mean velocity levels for LDV measurements made in a four valve spark ignition engine. Five different camshafts were tested, and they produce significantly different flow behaviour. The standard cam gives tumble and with valve deactivation, swirl is produced. One camshaft with early inlet valve closing and two camshafts with late inlet valve closing were also tested. The wavelet toolbox for Matlab version 5.1 has been used for the wavelet calculations. The wavelet technique produces both time resolved and frequency resolved velocity information. The results indicate some influence of the turbulence frequency content on the rate of heat release. Correlation against heat-release can be seen for different scales of turbulence. The breakdown of the tumble (low frequency turbulence) into high frequency turbulence can be seen clearly.
Technical Paper

Supercharged Homogeneous Charge Compression Ignition

1998-02-23
980787
The Homogeneous Charge Compression Ignition (HCCI) is the third alternative for combustion in the reciprocating engine. Here, a homogeneous charge is used as in a spark ignited engine, but the charge is compressed to auto-ignition as in a diesel. The main difference compared with the Spark Ignition (SI) engine is the lack of flame propagation and hence the independence from turbulence. Compared with the diesel engine, HCCI has a homogeneous charge and hence no problems associated with soot and NOX formation. Earlier research on HCCI showed high efficiency and very low amounts of NOX, but HC and CO were higher than in SI mode. It was not possible to achieve high IMEP values with HCCI, the limit being 5 bar. Supercharging is one way to dramatically increase IMEP. The influence of supercharging on HCCI was therefore experimentally investigated. Three different fuels were used during the experiments: iso-octane, ethanol and natural gas.
Technical Paper

Lean Burn Versus Stoichiometric Operation with EGR and 3-Way Catalyst of an Engine Fueled with Natural Gas and Hydrogen Enriched Natural Gas

2007-01-23
2007-01-0015
Engine tests have been performed on a 9.6 liter spark-ignited engine fueled by natural gas and a mixture of 25/75 hydrogen/natural gas by volume. The scope of the work was to test two strategies for low emissions of harmful gases; lean burn operation and stoichiometric operation with EGR and a three-way catalyst. Most gas engines today, used in city buses, utilize the lean burn approach to achieve low NOx formation and high thermal efficiency. However, the lean burn approach may not be sufficient for future emissions legislation. One way to improve the lean burn strategy is to add hydrogen to the fuel to increase the lean limit and thus reduce the NOx formation without increasing the emissions of HC. Even so, the best commercially available technology for low emissions of NOx, HC and CO today is stoichiometric operation with a three-way catalyst as used in passenger cars.
Technical Paper

Introductory Study of Variable Valve Actuation for Pneumatic Hybridization

2007-04-16
2007-01-0288
Urban traffic involves frequent acceleration and deceleration. During deceleration, the energy previously used to accelerate the vehicle is mainly wasted on heat generated by the friction brakes. If this energy that is wasted in traditional IC engines could be saved, the fuel economy would improve. One solution to this is a pneumatic hybrid using variable valve timing to compress air during deceleration and expand air during acceleration. The compressed air can also be utilized to supercharge the engine in order to get higher load in the first few cycles when accelerating. A Scania D12 single-cylinder diesel engine has been converted for pneumatic hybrid operation and tested in a laboratory setup. Pneumatic valve actuators have been used to make the pneumatic hybrid possible. The actuators have been mounted on top of the cylinder head of the engine. A pressure tank has been connected to one of the inlet ports and one of the inlet valves has been modified to work as a tank valve.
Technical Paper

Validation of a Self Tuning Gross Heat Release Algorithm

2008-06-23
2008-01-1672
The present paper shows the validation of a self tuning heat release method with no need to model heat losses, crevice losses and blow by. Using the pressure and volume traces the method estimates the polytropic exponents (before, during and after the combustion event), by the use of the emission values and amount of fuel injected per cycle the algorithm calculates the total heat release. These four inputs are subsequently used for computing the heat release trace. The result is a user independent algorithm which results in more objective comparisons among operating points and different engines. In the present paper the heat release calculated with this novel method has been compared with the one computed using the Woschni correlation for modeling the heat transfer. The comparison has been made using different fuels (PRF0, PRF80, ethanol and iso-octane) making sweeps in relative air-fuel ratio, engine speed, EGR and CA 50.
Technical Paper

Simulation of a Pneumatic Hybrid Powertrain with VVT in GT-Power and Comparison with Experimental Data

2009-04-20
2009-01-1323
In the study presented in this paper, experimental data from a pneumatic hybrid has been compared to the results from a simulation of the engine in GT-Power. The engine in question is a single-cylinder Scania D12 diesel engine, which has been converted to work as a pneumatic hybrid. The base engine model, provided by Scania, is made in GT-Power and it is based on the same engine configuration as the one used during real engine testing. During pneumatic hybrid operation the engine can be used as a 2-stroke compressor for generation of compressed air during vehicle deceleration and during vehicle acceleration the engine can be operated as a 2-stroke air-motor driven by the previously stored pressurized air. There is also a possibility to use the stored pressurized air in order to supercharge the engine when there is a need for high torque, like for instance at take off after a standstill or during an overtake maneuver.
X