Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

The Safety and Dynamic Performance of Blended Brake System on a Two-Speed DCT Based Battery Electric Vehicle

2016-04-05
2016-01-0468
Regenerative braking has been widely accepted as a feasible option to extend the mileage of electric vehicles (EVs) by recapturing the vehicle’s kinetic energy instead of dissipating it as heat during braking. The regenerative braking force provided by a generator is applied to the wheels in an entirely different manner compared to the traditional hydraulic-friction brake system. Drag torque and efficiency loss may be generated by transmitting the braking force from the motor, axles, differential and, specifically in this paper, a two-speed dual clutch transmission (DCT) to wheels. Additionally, motors in most battery EVs (BEVs) and hybrid electric vehicle (HEVs) are only connected to front or rear axle. Consequently, conventional hydraulic brake system is still necessary, but dynamic and supplement to motor brake, to meet particular brake requirement and keep vehicle stable and steerable during braking.
Technical Paper

An Electric Scooter with Super-Capacitor Drive and Regenerative Braking

2014-04-01
2014-01-1878
This paper presents a smart electric scooter system consisting of a microprocessor based vehicle controller (integrating an embedded regenerative braking controller), a 300W Permanent Magnet (PM) DC motor, two low-power DC-DC converters to form a higher power DC-DC converter pack, a motor controller, a supercapacitor bank and a capacitor cell balancing sub-system.
Technical Paper

Parameter Design of a Parallel Hydraulic Hybrid Vehicle Driving System Based on Regenerative Braking Control Strategy

2019-04-02
2019-01-0368
In this paper, hydraulic driving system parameters of a parallel hydraulic hybrid vehicle are designed based on the regenerative braking requirement. Torque, speed and power demands during typical driving cycles are analyzed. The braking control strategy is designed considering both the braking safety and braking energy recovery efficiency. The hydraulic braking torque is determined by the braking control strategy. The proportional relationship of hydraulic pump/ motor output torque and its working pressure is considered. Through simulation with typical city driving cycles, most braking energy can be recovered by the proposed hydraulic driving system and braking control strategy.
X