Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Investigation of Negative Valve Overlap Reforming Products Using Gas Sampling and Single-Zone Modeling

2015-04-14
2015-01-0818
Negative valve overlap (NVO) is a viable control strategy that enables low-temperature gasoline combustion (LTGC) at low loads. Thermal effects of NVO fueling on main combustion are well understood, but fuel reforming chemistry during NVO has not been extensively studied. The objective of this work is to analyze the impact of global equivalence ratio and available oxidizer on NVO product concentrations. Experiments were performed in a LTGC single-cylinder engine under a sweep of NVO oxygen concentration and NVO fueling rates. Gas sampling at the start and end of the NVO period was performed via a custom dump-valve apparatus with detailed sample speciation by gas chromatography. Single-zone reactor models using detailed chemistry at relevant mixing and thermodynamic conditions were used in parallel to the experiments to evaluate expected yields of partially oxidized species under representative engine time scales.
Journal Article

Analysis of Thermal and Chemical Effects on Negative Valve Overlap Period Energy Recovery for Low-Temperature Gasoline Combustion

2015-09-06
2015-24-2451
A central challenge for efficient auto-ignition controlled low-temperature gasoline combustion (LTGC) engines has been achieving the combustion phasing needed to reach stable performance over a wide operating regime. The negative valve overlap (NVO) strategy has been explored as a way to improve combustion stability through a combination of charge heating and altered reactivity via a recompression stroke with a pilot fuel injection. The study objective was to analyze the thermal and chemical effects on NVO-period energy recovery. The analysis leveraged experimental gas sampling results obtained from a single-cylinder LTGC engine along with cylinder pressure measurements and custom data reduction methods used to estimate period thermodynamic properties. The engine was fueled by either iso-octane or ethanol, and operated under sweeps of NVO-period oxygen concentration, injection timing, and fueling rate.
Journal Article

Investigation of Fuel Effects on In-Cylinder Reforming Chemistry Using Gas Chromatography

2016-04-05
2016-01-0753
Negative Valve Overlap (NVO) is a potential control strategy for enabling Low-Temperature Gasoline Combustion (LTGC) at low loads. While the thermal effects of NVO fueling on main combustion are well-understood, the chemical effects of NVO in-cylinder fuel reforming have not been extensively studied. The objective of this work is to examine the effects of fuel molecular structure on NVO fuel reforming using gas sampling and detailed speciation by gas chromatography. Engine gas samples were collected from a single-cylinder research engine at the end of the NVO period using a custom dump-valve apparatus. Six fuel components were studied at two injection timings: (1) iso-octane, (2) n-heptane, (3) ethanol, (4) 1-hexene, (5) cyclohexane, and (6) toluene. All fuel components were studied neat except for toluene - toluene was blended with 18.9% nheptane by liquid volume to increase the fuel reactivity.
Journal Article

Mechanisms of Enhanced Reactivity with Ozone Addition for Advanced Compression Ignition

2018-04-03
2018-01-1249
Mechanisms responsible for enhanced charge reactivity with intake added ozone (O3) were explored in a single-cylinder, optically accessible, research engine configured for low-load advanced compression ignition (ACI) experiments. The influence of O3 concentration (0-40 ppm) on engine performance metrics was evaluated as a function of intake temperature and start of injection for the engine fueled by iso-octane, 1-hexene, or a 5-component gasoline surrogate. For the engine fueled by either the gasoline surrogate or 1-hexene, 25 ppm of added O3 reduced the intake temperature required for stable combustion by 65 and 80°C, respectively. An ultraviolet (UV) light absorption diagnostic was also used to measure crank angle (CA) resolved in-cylinder O3 concentrations for select motored and fired operating conditions. The O3 measurements were compared to results from complementary 0D chemical kinetic simulations that utilized detailed chemistry mechanisms augmented with O3 oxidation chemistry.
Technical Paper

Measurements and modeling of ozone enhanced compression ignition in a rapid compression machine and optically-accessible engine

2019-12-19
2019-01-2254
For the present study, an ultraviolet light absorption diagnostic was used to measure O3 concentration during the compression stroke of a rapid compression machine and an optically-accessible research engine. Charge oxygen concentration, initial temperature, and equivalence ratio were varied; neat iso-octane was used for fueled experiments. Measurements were compared to single-zone chemical kinetic simulation results. Rapid thermally induced O3 decomposition was observed near top dead center. Ozone decomposition advanced when the charge temperature was increased, oxygen concentration was reduced, or fuel was added. While the model well-captures the experimental trends, for unfueled conditions the temporal prediction of O3 decomposition is generally too far retarded.
Journal Article

Spark Assisted Compression Ignition Engine with Stratified Charge Combustion and Ozone Addition

2019-12-19
2019-01-2253
Performance and emissions characteristics for stratified charge spark assisted compression ignition (SACI) with 30 ppm of added ozone (O3) were explored in a single-cylinder, optically accessible, spray-guided, research engine. For the present study, intake pressure and temperature were fixed at 1.0 bar and 42°C respectively, with a range of engine loads (1.5 – 5.5 bar indicated mean effective pressure) and speeds (800 – 1600 revolutions per minute) explored. Fuel stratification achieved by a late-cycle injection of ~ 10–25% of the total fuel was used to maintain stable operation at lower engine loads. For each condition spark timing, second injection SOI, and fuel split ratio between the main and second injection were optimized to maximize engine performance while maintaining nitrogen oxide emissions (NOx) below 5 g/kg-fuel.
X