Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

An EGR Control Method for Heavy-Duty Diesel Engines under Transient Operations

1990-02-01
900444
Experiments and analyses were carried out to determine the effects of EGR on NOx and other pollutants for heavy-duty direct injection diesel engines under steady state conditions. Then based on them, optimum EGR control method was examined for effective NOx reduction without causing substantial increases of other pollutants under transient conditions. A simple EGR control system was developed for trial to achieve almost the same effects of the said method. Results of experiments with this system indicated that the EGR control method was capable of substantial reduction of NOx mass emission during transient engine operations equivalent to actual driving conditions, with different pay-loads and average vehicle speeds. REDUCTION of the NOx mass emission from heavy-duty diesel powered vehicles during actual driving operations, is one of the most important demands in automobile technologies.
Technical Paper

Trapping Performance of Fine Particles from a Diesel Engine by Various DPFs with Different Surface Structures

2004-03-08
2004-01-0598
The regulation of particulate matter (PM) from diesel engines is coming to be very stringent at present. The usage of diesel particulate filter (DPF) is now under consideration in many heavy-duty diesel vehicle manufacturers to reduce PM emission from a diesel engine. The possibility that very fine particles may pass through DPF is suggested. The understanding of fine particles emission behaviors and the countermeasure of reducing particle emissions from DPF will come to be important in near future. The behavior of particle size distribution after DPF has not been studied enough yet. In this study, fine particles generated by a diesel engine are introduced to honeycomb type and SiC (Silicon Carbite) fiber type DPFs and the collection performances of fine particles by various DPFs with different surface structures have been examined.
Technical Paper

Research and Development Program of the Next-generation Environmentally Friendly Vehicles(EFVs) in Japan

2004-03-08
2004-01-0644
The increase in number of automobiles due to its convenience brought serious increases in environmental load. The rate of attainment of environmental standards for nitrogen dioxide (NO2) and suspended particulate matter (SPM) in urban areas is still low in Japan. Diesel vehicles emit the vast majority of air pollutants from exhaust. Therefore, developing emission measures, particularly for diesel vehicles, is an urgent task for addressing air pollution. Furthermore, at the Third Conference of the Parties to the UN Framework Convention on Climate Change (COP 3) held in Kyoto in December 1997, Japan pledged to reduce greenhouse gas emissions to 6 percent below 1990 levels for the first commitment period of 2008 to 2012. To address vehicle emissions, Japan is gradually introducing increasingly strict NOx and particulate matter regulations.
Technical Paper

Influence of Dilution Process on Engine Exhaust Nano-Particles

2004-03-08
2004-01-0963
Recently, particulate matter (PM) emission from internal combustion engines, especially particles having the diameter of less than 100 nm (Nano-particles) are being considered for their potential hazards posed to human health and the environment. Nano-particles are unstable and easily influenced by the conditions of engine operation and measurement techniques. In this study, the influences of cooling and dilution processes on nano- particles are presented to understand the generation and dilution mechanisms, and to further development of an accurate measurement method. It is found that the thermo-dilurter is necessary for measuring the nano-particles with higher accuracy. Accurate measurement of nano-particles requires immediate dilution of the exhaust gases by hot air.
Technical Paper

Comparison of Numerical Results and Experimental Data on Emission Production Processes in a Diesel Engine

2001-03-05
2001-01-0656
Simulations of DI Diesel engine combustion have been performed using a modified KIVA-II package with a recently developed phenomenological soot model. The phenomenological soot model includes generic description of fuel pyrolysis, soot particle inception, coagulation, and surface growth and oxidation. The computational results are compared with experimental data from a Cummins N14 single cylinder test engine. Results of the simulations show acceptable agreement with experimental data in terms of cylinder pressure, rate of heat release, and engine-out NOx and soot emissions for a range of fuel injection timings considered. The numerical results are also post-processed to obtain time-resolved soot radiation intensity and compared with the experimental data analyzed using two-color optical pyrometry. The temperature magnitude and KL trends show favorable agreement.
Technical Paper

Effects of Fuel Properties on Combustion and Exhaust Emissions of Homogeneous Charge Compression Ignition (HCCI) Engine

2004-06-08
2004-01-1966
Homogeneous Charge Compression Ignition (HCCI) is effective for the simultaneous reduction of soot and NOx emissions from diesel engine. In general, high octane number and volatility fuels (gasoline components or gaseous fuels) are used for HCCI operation, because very lean mixture must be formed during ignition delay of the fuel. However, it is necessary to improve fuel injection systems, when these fuels are used in diesel engine. The purpose of the present study is the achievement of HCCI combustion in DI diesel engine without the large-scale improvements of engine components. Various high octane number fuels are mixed with diesel fuel as a base fuel, and the mixed fuels are directly applied to DI diesel engine. At first, the cylinder pressure and heat release rate of each mixed fuel are analyzed. The ignition delay of HCCI operation decreases with an increase in the operation load, although that of conventional diesel operation does not almost varied.
Technical Paper

Comparative Measurement of Nano-Particulates in Diesel Engine Exhaust Gas by Laser-Induced Incandescence (LII) and Scanning Mobility Particle Sizer (SMPS)

2004-06-08
2004-01-1982
Particulate Matter (PM) from diesel engines is thought to be seriously hazardous for human health. Generally, it is said that the hazard depends on the total number and surface area of particles rather than total mass of PM. In the conventional gravimetric method, only the total mass of PM is measured. Therefore, it is very important to measure not only the mass of PM but also size and number density of particulates. Laser-Induced Incandescence (LII) is a useful diagnostic for transient measurement of soot particulate volume fraction and primary particle size. On the other hand, Scanning Mobility Particle Sizer (SMPS) is also used to measure the size distribution of soot aggregate particulates at a steady state condition. However, the measurement processes and the phenomena used to acquire the information on soot particulate are quite different between the LII and SMPS methods. Therefore, it is necessary to understand the detailed characteristics of both LII and SMPS.
Technical Paper

A New Type Partial Flow Dilution Tunnel with Geometrical Partitioning for Diesel Particulate Measurement

2001-09-24
2001-01-3579
The authors have developed a new partial flow dilution tunnel (hereafter referred to as PPFT), whose principal device is a flux splitting gas divider, as a new means of measuring particulate emissions which can be applied to transient cycle testing of diesel engines. The advantage of this system is that it can achieve perfect constant velocity splitting by means of its structure, and theoretically can also maintain high splitting performance despite fluctuations in the exhaust flow rate, including those due to engine exhaust pulsation. We compared this system with a full tunnel by analyzing the basic performance of the system and measuring particulate matter (PM) using an actual vehicle engine.
Technical Paper

Study of the Effect of Boiling Point on Combustion and PM Emissions in a Compression Ignition Engine Using Two-Component n-Paraffin Fuels

2002-03-04
2002-01-0871
Fuel composition is investigated as a parameter influencing fuel/air mixing of direct injected fuel and the subsequent consequences for particulate emissions. Presumably, enhanced mixing prior to ignition results in a larger portion of fuel burning as a premixture and a smaller portion of diffusion burning around fuel-rich regions. This would potentially lower particulate emissions without overly compromising hydrocarbon emissions or high load operation. Using mixtures of n-paraffin fuels, particulate emissions were measured and the results were compared with in-cylinder visualization of the injection process and two-color method calculations of flame temperature. In general, lower boiling point fuels exhibited higher flame temperatures, less visible flame, and lower particulate emissions.
Technical Paper

Measurement of the Diesel Exhaust Particle Reduction Effect and Particle Size Distribution in a Transient Cycle Mode with an Installed Diesel Particulate Filter (DPF)

2002-03-04
2002-01-1005
Exhaust emissions and particulate matter (PM) from an engine with a conventional continuous regeneration diesel particulate filter (DPF) were measured to evaluate DPF performance under the Japan 13-mode cycle, European Stationary Cycle and various transient cycles: U.S. transient cycle, Japan Automobile Research Institute cycle, and World-wide Heavy Duty Cycle. The emission tendencies with and without DPF under these conditions were clarified. According to these experiments, accumulated PM in the DPF under the driving modes mentioned above has influence on measurement errors. It is necessary to estimate the amount of accumulated PM in the DPF to evaluate the PM reduction rate correctly. This study also measured particle size distribution of diesel exhaust particulates (DEP) downstream of the DPF using an electrical low-pressure impactor (ELPI). As a result, we determined that most of the particles not trapped by the DPF are less than 110nm.
Technical Paper

Influence of Thermo-Denuder Dimensions on Nano-particle Measurement

2003-05-19
2003-01-2018
The use of a Thermo-Denuder (TD) is proposed to suppress the nano-particle measurement fluctuations caused by the volatile components in the available techniques. The problems encountered during the use of thermo-denuder for nano-particle measurement and their respective solutions are suggested. The behavior of nano-particles in the TD itself is not clearly understood but the thermo-denuder influences both the volatile and solid particles. As a first report, only the effect of TD dimension on solid nano-particle measurements is presented. It is concluded that the TD influences the nano-particles i.e. loss of particles occurs even the sample gas contains no volatile fractions. A sharp temperature gradient between the low temperature wall of the absorption part of TD and hot sample gas causes particle losses due to thermophoresis effect. Especially the smaller particles are affected significantly.
Technical Paper

Optimizing Control of NOx and Smoke Emissions from DI Engine with EGR and Methanol Fumigation

1992-02-01
920468
An attempt was made to optimize NOx and particulate emissions from heavy-duty diesel powered vehicles under heavy load engine operating regions by combining EGR and methanol fumigation and the effects on exhaust emissions were experimentally studied. The results under steady states tests show that, the smoke concentration is decreased and total fuel consumption is improved according to the increase in methanol energy ratio. As NOx reduction effect of EGR does not affected by methanol fumigation, drastic NOx reduction can be thereby possible at heavy load regions with the combined use of EGR and methanol fumigation. Then, this method was applied to new Japanese 13 mode test procedure and it was recognized that the NOx mass emissions were reduced to almost one half without increase in particulate emissions. However, drastic increase in CO, HC and aldehyde emissions were observed also.
Technical Paper

Thermal Conditioning of Exhaust Gas: Potential for Stabilizing Diesel Nano-Particles

2005-04-11
2005-01-0187
Conditioning of diluted exhaust gas by Thermo-Conditioner prior to measurement has been proposed by the GRPE/PMP Research Council of the United Nation in order to achieve stability in nano-particle measurement. In this study the effect of thermo-conditioner on the thermo-physical behavior of nano-particle under different conditions have been clarified. Stability in measurement was also attempted depending on the characteristics of nano-particles. Quality of the raw exhaust gas, the dilution ratio and temperature, and the thermal conditioning temperature were considered as the main parameters. Exhaust gas from a medium duty DI diesel engine was used for analysis. Scanning Mobility Particle Sizer was used for measuring the concentration of nano-particles. It was concluded that the concentration of nuclei-mode particles within the size range of 15∼30 nm are significantly influenced by the thermal conditioning temperature.
Technical Paper

Continuous Measurement of Diesel Particulate Emissions by an Electrical Low-Pressure Impactor

2000-03-06
2000-01-1138
In addition to PM total matter, PM size distribution is recently receiving increased attention because of the dependency of PM size on human health effects. Thus, PM size distributions and the emission behavior under various driving patterns are becoming important in diesel particulate emissions. Electrical Low Pressure Impactor (ELPI)_is a candidate to measure continuously, not only PM mass, but also particulate size distribution. Therefore, we investigated using ELPI to measure diesel particulate mass and size distribution, together with time series behaviors under various driving patterns. This study demonstrated the feasibility of continuous measurement of PM size distribution by means of an ELPI. The typical PM size distribution curve on weight base has a peak of 0.18 micrometer. The typical PM size distribution curve on number base has a peak of 0.11 micrometer. Engine load influences these characteristics.
X