Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Secondary Organic Carbon (SOC) Formation from a CRDI Automotive Diesel Engine Exhaust

2011-04-12
2011-01-0642
Condensed soot coming out of vehicular exhaust is commonly classified as organic carbon (OC) and elemental carbon (EC). OC can be directly emitted to the atmosphere in the particulate form (primary carbon) from the tailpipe or can be produced by gas-to-particle conversion process (secondary organic carbon, SOC). Under typical atmospheric dilution conditions, most of the semi-volatile material is present in the form of soot. SOC holds wider implications in terms of their adverse health and climate impact. Diesel exhaust is environmentally reactive and it has long been understood that the ambient interaction of exhaust hydrocarbons and NOx results in the formation of ozone and other potentially toxic secondary organic carbon species. The current emission norms look at the primary emissions from the engine exhaust. Also, research efforts are geared towards controlling the emissions of primary carbon.
Technical Paper

Diesel Exhaust Particulate Characterization for Poly Aromatic Hydrocarbons and Benzene Soluble Fraction

2005-10-23
2005-26-348
This study was set out to characterize particulate emissions from diesel engines in terms of poly aromatic hydrocarbon emissions and Benzene Soluble Organic Fraction. The characteristics of DPM vary with engine operating conditions, quality of fuel and lubricants being used. Hence the diesel exhaust for the purpose of toxicity characterization needs to be studied for Organic Matter in terms of Poly Aromatic Hydrocarbon (PAH) and Benzene Soluble Fraction (BSF). Therefore, the objectives of the present research are to characterize the diesel exhaust particulate matter for the above parameters under varying engine operating conditions/loads. Six PAHs, namely Chrysene, Benzo (k) Flouranthene, Benzo (a) Pyrene, Dibenzo (a, h) Anthracene, Benzo (g,h,i) Perylene and Indenopyrene were analyzed on High Pressure Liquid Chromatography (HPLC). PAH concentrations in the particulates of Mahindra DI engine were affected by engine loads.
X