Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Performance, Emission and Combustion Characteristics of Biodiesel (Waste Cooking Oil Methyl Ester) Fueled IDI Diesel Engine

2008-04-14
2008-01-1384
Biodiesel (fatty acid methyl ester) is a non-toxic and biodegradable alternative fuel that is obtained from renewable sources. A major hurdle in the commercialization of biodiesel from virgin oil, in comparison to petroleum-based diesel, is its cost of production, primarily the raw material cost. Used cooking oils or waste cooking oils are economical sources for biodiesel production, which can help in commercialization of biodiesel. However, the products formed during cooking/frying (such as free fatty acids and various polymerized triglycerides) affect the transesterification reaction and the biodiesel properties. In present experimental investigations, wastecooking oil obtained from restaurant was used to produce biodiesel through transesterification process and the chemical kinetics of biodiesel production was studied. Biodiesel was blended with petroleum diesel in different proportions.
Technical Paper

CI/PCCI Combustion Mode Switching of Diesohol Fuelled Production Engine

2017-03-28
2017-01-0738
Premixed charge compression ignition (PCCI) combustion is an advanced combustion technique, which has the potential to be operated by alternative fuels such as alcohols. PCCI combustion emits lower oxides of nitrogen (NOx) and particulate matter (PM) and results thermal efficiency similar to conventional compression ignition (CI) engines. Due to extremely high heat release rate (HRR), PCCI combustion cannot be used at higher engine loads, which make it difficult to be employed in production grade engines. This study focused on development of an advanced combustion engine, which can operate in both combustion modes such as CI combustion as well as PCCI combustion mode. This Hybrid combustion system was controlled by an open engine control unit (ECU), which varied the fuel injection parameters for mode switching between CI and PCCI combustion modes.
Technical Paper

An Experimental Investigation of Combustion, Emissions and Performance of a Diesel Fuelled HCCI Engine

2012-01-09
2012-28-0005
Homogeneous charge compression ignition (HCCI) is an advanced combustion concept that is developed as an alternative to diesel engines with higher thermal efficiency along with ultralow NOx and PM emissions. To study the performance of this novel technique, experiments were performed in a two cylinder engine, in which one cylinder is modified to operate in HCCI mode while other cylinder operates in conventional CI mode. The quality of homogeneous mixture of air and fuel is the key feature of HCCI combustion. Low volatility of diesel is a major hurdle in achieving HCCI combustion because it is difficult to make a homogeneous mixture of air and fuel. This problem is resolved by external mixture preparation technique in uses a dedicated diesel vaporizer with an electronic control system. All the injection parameters such as fuel quantity, fuel injection timing, injection delay etc., are controlled by the injection driver circuit.
Technical Paper

Effect of Intake Charge Temperature and EGR on Biodiesel Fuelled HCCI Engine

2016-02-01
2016-28-0257
IC engines are facing two major challenges in the 21st century namely threat of fossil fuel depletion and environmental concerns. HCCI engine is an attractive solution to meet stringent emission challenges due to its capability to simultaneously reduce NOx and PM. HCCI technology can be employed with different alternative fuels without significant modifications in the existing engines. In this study, HCCI combustion was investigated using B20 (20% v/v biodiesel with diesel). Investigations were carried out on a two cylinder engine, in which one cylinder was modified to operate in HCCI mode however the other cylinder operated in conventional CI combustion mode. A dedicated fuel vaporizer was used for homogeneous fuel-air mixture preparation. The experiments were performed at three different intake charge temperatures (160°C, 180°C and 200°C) and three different EGR ratios (0%, 10% and 20% EGR) at different engine loads.
Technical Paper

In-Cylinder Air-Flow Characteristics Using Tomographic PIV at Different Engine Speeds, Intake Air Temperatures and Intake Valve Deactivation in a Single Cylinder Optical Research Engine

2016-02-01
2016-28-0001
Fuel-air mixing is the main parameter, which affects formation of NOx and PM during CI combustion. Hence better understanding of air-flow characteristics inside the combustion chamber of a diesel engine became very important. In this study, in-cylinder air-flow characteristics of four-valve diesel engine were investigated using time-resolved high-speed tomographic Particle Imaging Velocimetry (PIV). For visualization of air-flow pattern, fine graphite particles were used for flow seeding. To investigate the effect of different operating parameters, experiments were performed at different engine speeds (1200 rpm and 1500 rpm), intake air temperatures (room temperature and 50°C) and intake port configurations (swirl port, tangential port and combined port). Intake air temperature was controlled by a closed loop temperature controller and intake ports were deactivated by using a customized aluminum gasket.
Technical Paper

Numerical Predictions of In-Cylinder Phenomenon in Methanol Fueled Locomotive Engine Using High Pressure Direct Injection Technique

2021-04-06
2021-01-0492
Petroleum products are used to power internal combustion engines (ICEs). Emissions and depletion of petroleum reserves are important questions that need to be answered to ensure existence of ICEs. Indian Railways (IR) operates diesel locomotives, which emit large volume of pollutants into the environment. IR is looking for an alternative to diesel for powering the Locomotives. Methanol has emerged as a replacement for petroleum fuels because it can be produced from renewable resources as well as from non-renewable resources in large quantities on a commercially viable scale. It has similar/superior physico-chemical properties, which reduce tailpipe emissions significantly. It is therefore necessary to understand the in-cylinder phenomenon in methanol fueled engines before its implementation on a large-scale.
Technical Paper

Feasibility Assessment of Methanol Fueling in Two-Wheeler Engine Using 1-D Simulations

2021-04-06
2021-01-0382
Alternative fuels, coupled with advanced engine technologies, are potential solutions to overcome energy crisis and environmental degradation challenges, that transport sector faces. Methanol has emerged as a potential candidate as an alternate fuel due to adequate availability of indigenous feedstocks, such as coal, biomass, and municipal solid waste (MSW). Policy makers of several countries are focusing on developing roadmap for methanol fueled vehicles, especially in developing countries like China and India. These countries have the largest two-wheeler market globally; therefore, methanol adaptability on 2-wheeler engine becomes important national priority. This study is aimed at feasibility assessment of methanol (M100) fueled two-wheeler engine using simulations. Present study was divided into four different phases.
X