Refine Your Search

Search Results

Viewing 1 to 3 of 3
Video

Development of High-Efficiency Rotary Engines

2012-05-10
In this presentation, we will explain how the traditional Miller Cycle - which has its limitations in the traditional four-stroke, Otto Cycle engine provides new opportunities for greater fuel efficiency gains and engine downsizing when incorporated in a split-cycle combustion process. Results will also be shared from studies showing how these implementations can provide both significant drops in fuel consumption and increases in power when incorporated into some of today's most economic vehicles. Presenter Stephen Scuderi, Scuderi Group LLC
Technical Paper

Development of a Small Rotary SI/CI Combustion Engine

2014-11-11
2014-32-0104
This paper describes the development of small rotary internal combustion engines developed to operate on the High Efficiency Hybrid Cycle (HEHC). The cycle, which combines high compression ratio (CR), constant-volume (isochoric) combustion, and overexpansion, has a theoretical efficiency of 75% using air-standard assumptions and first-law analysis. This innovative rotary engine architecture shows a potential indicated efficiency of 60% and brake efficiency of >50%. As this engine does not have poppet valves and the gas is fully expanded before the exhaust stroke starts, the engine has potential to be quiet. Similar to the Wankel rotary engine, the ‘X’ engine has only two primary moving parts - a shaft and rotor, resulting in compact size and offering low-vibration operation. Unlike the Wankel, however, the X engine is uniquely configured to adopt the HEHC cycle and its associated efficiency and low-noise benefits.
Technical Paper

Experimental and Numerical Analysis of an Outward Opening Injector Pintle Dynamics

2023-10-24
2023-01-1810
Direct injection strategies have been successfully used on spark ignited internal combustion engines for improving performance and reducing emissions. Among the different technologies available, outward opening injectors seem to have found their place in renewable applications running on gaseous fuels, including natural gas or hydrogen, as well as in a few specific liquid fuel applications. In order to understand the key operating principles of these devices, their limitations and the resulting sprays, it is necessary to accurately describe the pintle dynamics. The pintle’s relative position with respect to the injector body defines the internal flow geometry and therefore the injection rates and spray characteristics. In this paper both numerical and experimental investigations of the dynamics of an outward opening injector pintle have been carried out.
X