Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Numerical Study of a Turbocharged, Jet Ignited, Cryogenic, Port Injected, Hydrogen Engine

2009-04-20
2009-01-1425
Favorable and unfavorable properties of hydrogen as a combustion engine fuel have been accommodated in a design of a fuel efficient and clean engine providing similar to gasoline maximum torque and power. The advanced H2ICE being developed is a turbocharged engine fitted with cryogenic port hydrogen fuel injection and the hydrogen assisted jet ignition (HAJI). The combustion chamber is designed to produce a high compression ratio and therefore high thermal efficiency. A waste gated turbocharger provides pressure boosting for an increased power density running ultra lean for SULEV operation without after treatment. Thanks to the combustion properties of hydrogen further enhanced by the HAJI system, the engine load is mainly controlled throttle-less decreasing the fuel-to-air equivalence ratio from ultra lean ϕ=0.43 to ultra-ultra lean ϕ=0.18. The computational model developed for addressing the major design issues and the predicted engine performance and efficiency maps are included.
Technical Paper

Comparison of Pfi and Di Superbike Engines

2008-12-02
2008-01-2943
Gasoline Direct Injection (DI) is a technique that was successful in motor sports several decades ago and is now relatively popular in passenger car applications only. DI gasoline fuel injectors have been recently improved considerably, with much higher fuel flow rates and much finer atomization enabled by the advances in fuel pressure and needle actuation. These improved injector performance and the general interest in reducing fuel consumption also in motor sports have made this option interesting again. This paper compares Port Fuel Injection (PFI) and DI of gasoline fuel in a high performance, four cylinder spark ignition engine for super bike racing. Computations are performed with a code for gas exchange, heat transfer and combustion, simulating turbulent combustion and knock.
Technical Paper

The Lean Burn Direct-Injection Jet-Ignition Flexi Gas Fuel LPG/CNG Engine

2009-11-02
2009-01-2790
This paper explores through engine simulations the use of LPG and CNG gas fuels in a 1.5 liter Spark Ignition (SI) four cylinder gasoline engine with double over head camshafts, four valves per cylinder equipped with a novel mixture preparation and ignition system comprising centrally located Direct Injection (DI) injector and Jet Ignition (JI) nozzles. With DI technology, the fuel may be introduced within the cylinder after completion of the valve events. DI of fuel reduces the embedded air displacement effects of gaseous fuels and lowers the charge temperature. DI also allows lean stratified bulk combustion with enhanced rate of combustion and reduced heat transfer to the cylinder walls creating a bulk lean stratified mixture.
Technical Paper

Parametric Design of FIM WGP Engines

2002-12-02
2002-01-3317
The paper compares Road Racing World Championship Grand Prix (WGP) engine solutions developed in compliance with the 2002 Federation Internationale de Motocyclisme (FIM) Technical Regulations. Ad-hoc assumptions, similarity rules and nondimensional parameters from previous projects are used to define geometric and operating parameters for partly similar engine solutions basically differing in the number of cylinders, three, four, five or six, and the cylinder layout, in-line or V-angle. Results are shown as computed classical engine outputs versus engine speed, including brake, indicated and friction values. By increasing the number of cylinders, charging efficiency reduces, while thermal efficiency increases. Higher values of brake torque and power and lower values of brake specific fuel consumption are provided by the V-angle six cylinder engine.
Technical Paper

On the Advantages of E100 Over Gasoline in Down-Sized, Turbo-Charged, Direct-Injected, Variable Valve Actuated, and Stoichiometric S.I. Engines

2011-10-06
2011-28-0020
Current flexi fuel gasoline and ethanol engines have efficiencies generally lower than dedicated gasoline engines. Considering ethanol has a few advantages with reference to gasoline, namely the higher octane number and the larger heat of vaporization, the paper explores the potentials of dedicated pure ethanol engines using the most advanced techniques available for gasoline engines, specifically direct injection, turbo charging and variable valve actuation. Computations are performed with state-of-the-art, well validated, engine and vehicle performance simulations packages, generally accepted to produce accurate results targeting major trends in engine developments. The higher compression ratio and the higher boost permitted by ethanol allows larger top brake efficiencies than gasoline, while variable valve actuation produces small penalties in efficiency changing the load.
Technical Paper

Use of Bio Ethanol the Key Solution for a More Sustainable Road Transport

2011-10-06
2011-28-0014
Life Cycle Analysis (LCA) of alternative transportation fuels clearly shows the advantages of reducing the use of non renewable fossil fuels vs. renewable synthetic and biologic novel fuels to reduce the emissions of carbon dioxide. Being based on the natural or synthetic recycle of carbon dioxide through the use of renewable energy sources, use of these renewable fuels do not imply depletion of natural resources and is therefore sustainable in the long term. Renewable fuels and advanced internal combustion engines and power-trains are the technologies that in addition to be the most likely to produce benefits in term of carbon balance and fossil fuel saving, are also those that unequivocally have the smallest ecological footprint considering all the environmental implication of transportation technologies. All the other more exotic solutions having much higher environmental costs to produce, use and dispose of alternative transportation technologies.
Technical Paper

Alternative Crankshaft Mechanisms and Kinetic Energy Recovery Systems for Improved Fuel Economy of Passenger Cars

2011-10-06
2011-28-0053
The paper presents a novel design of a variable compression ratio advanced spark ignition engine that also permits an expansion ratio that may differ from the compression ratio therefore generating an Atkinson cycle effect. The stroke ratio and the ratio of maximum to minimum in-cylinder volumes may change with load and speed to provide the best fuel conversion efficiency. The variable ratio of maximum to minimum in-cylinder volumes also improves the full load power output of the engine. Brake specific fuel consumption maps are computed for a gasoline engine 2 Litres, in-line four, turbocharged and direct injection showings significant fuel savings during light and medium loads operation as well as improvement of full load output and fuel efficiency.
X