Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Impact of Biodiesel Blends on Fuel Consumption and Emissions in Euro 4 Compliant Vehicles

2010-05-05
2010-01-1484
Fatty Acid Methyl Ester (FAME) products derived from vegetable oils and animal fats are now widely used in European diesel fuels and their use will increase in order to meet mandated targets for the use of renewable products in road fuels. As more FAME enters the diesel pool, understanding the impact of higher FAME levels on the performance and emissions of modern light-duty diesel vehicles is increasingly important. Of special significance to Well-to-Wheels (WTW) calculations is the potential impact that higher FAME levels may have on the vehicle's volumetric fuel consumption. The primary objective of this study was to generate statistically robust fuel consumption data on three light-duty diesel vehicles complying with Euro 4 emissions regulations. These vehicles were evaluated on a chassis dynamometer using four fuels: a hydrocarbon-only diesel fuel and three FAME/diesel fuel blends containing up to 50% v/v FAME. One FAME type, a Rapeseed Methyl Ester (RME), was used throughout.
Technical Paper

The Effect of Biodiesel on PAHs, Nitro-PAHs and Oxy-PAHs Emissions from a Light Vehicle Operated Over the European and the Artemis Driving Cycles

2009-06-15
2009-01-1895
This study examines the effects of neat soy-based biodiesel (B100) and its 50% v/v blend (B50) with low sulphur automotive diesel on vehicle PAH emissions. The measurements were conducted on a chassis dynamometer with constant volume sampling (CVS) according to the European regulated technique. The vehicle was a Euro 2 compliant diesel passenger car, equipped with a 1.9 litre common-rail turbocharged direct injection engine and an oxidation catalyst. Emissions of PAHs, nitro-PAHs and oxy-PAHs were measured over the urban phase (UDC) and the extra-urban phase (EUDC) of the type approval cycle (NEDC). In addition, for evaluating realistic driving performance the non-legislated Artemis driving cycles (Urban, Road and Motorway) were used. Overall, 12 PAHs, 4 nitro-PAHs, and 6 oxy-PAHs were determined. The results indicated that PAH emissions exhibited a reduction with biodiesel during all driving modes.
Technical Paper

Evaluation of Biodiesel Blends on the Performance and Emissions of a Common-Rail Light-Duty Engine and Vehicle

2009-04-20
2009-01-0692
Today most of the European member states offer diesel fuel which contains fatty acid methylesters (biodiesel) at a range between 0.5 to 5% vol. In order to meet longer term objectives, the mixing ratio is expected to rise up to 10% vol. in the years to come. The question therefore arises, how current engine technologies, which were not originally designed to operate on biodiesel blends, perform at this relatively high mixing ratio. A number of experiments were therefore performed over several steady-state operation modes, using a 10% vol. biodiesel blend (palm oil feedstock) on a light-duty common-rail Euro 3 engine. The experiments included measurement of the in-cylinder pressure during combustion, regulated pollutants emissions and fuel consumption. The analysis showed that the blends tested present good fuel characteristics. Combustion effects were limited but changes in the start of ignition and heat release rate could still be identified.
Technical Paper

Effect of Biodiesel Origin on the Regulated and PAH Emissions from a Modern Passenger Car

2011-04-12
2011-01-0615
This study investigates the impact of low concentration biodiesel blends on the regulated and polycyclic aromatic hydrocarbon (PAH) emissions from a modern passenger vehicle. The vehicle was Euro 4 compliant fitted with a direct injection common-rail diesel engine and a diesel oxidation catalyst. Emission and fuel consumption measurements were performed on a chassis dynamometer using constant volume sampling (CVS) technique, following the European regulations. All measurements were conducted over the type approval New European Driving Cycle (NEDC) and the real-traffic-based Artemis driving cycles. Aiming to evaluate the fuel impact on emissions, a soy-based, a palm-based, and a rapeseed oil-based biodiesel were blended with an ultra-low sulfur diesel at proportions of 10, 20, and 30% by volume. The experimental results revealed that emissions of PM, HC and CO decreased with biodiesel over most driving conditions.
Technical Paper

Experimental Assessment of a Diesel-LPG Dual Fuel Supply System for Retrofit Application in City Busses

2012-09-24
2012-01-1944
Gas-operated vehicles powered by natural gas (NG) or other gaseous fuels such as liquefied petroleum gas (LPG), are seen as a possible option for curbing CO₂ emissions, fuel consumption and operating costs of goods and passenger transport. Initiatives have been adopted by various public organizations in Europe and abroad in order to introduce gas-fueled vehicles in their fleets or use retrofit fueling systems in existing ones. In this study a retrofit dual fuel (diesel-gas) fuelling system was investigated as a potential candidate technology for city bus fleets. The system is marketed under the commercial name d-gid. It is a platform developed by the company Ecomotive Solutions for the control and management of a diesel engine fuelled with a mixture of gaseous fuels. In order to assess its environmental and cost effectiveness the system was tested on a Volvo city bus. The tests were performed on an HDV chassis dyno under various driving conditions.
X