Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

High Efficiency, Low Emissions RCCI Combustion by Use of a Fuel Additive

2010-10-25
2010-01-2167
Heavy-duty engine experiments were conducted to explore reactivity controlled compression ignition (RCCI) combustion through addition of the cetane improver di-tert-butyl peroxide (DTBP) to pump gasoline. Unlike previous diesel/gasoline dual-fuel operation of RCCI combustion, the present study investigates the feasibility of using a single fuel stock (gasoline) as the basis for both high reactivity and low reactivity fuels. The strategy consisted of port fuel injection of gasoline and direct injection of the same gasoline doped with a small volume percent addition of DTBP. With 1.75% DTBP by volume added to only the direct-injected fuel (which accounts for approximately 0.2% of the total fueling) it was found that the additized gasoline behaved similarly to diesel fuel, allowing for efficient RCCI combustion. The single fuel results with DTBP were compared to previous high-thermal efficiency, low-emissions results with port injection of gasoline and direct injections of diesel.
Technical Paper

Reactivity Controlled Compression Ignition (RCCI) Heavy-Duty Engine Operation at Mid-and High-Loads with Conventional and Alternative Fuels

2011-04-12
2011-01-0363
Engine experiments and multi-dimensional modeling were used to explore Reactivity Controlled Compression Ignition (RCCI) to realize highly-efficient combustion with near zero levels of NOx and PM. In-cylinder fuel blending using port-fuel-injection of a low reactivity fuel and optimized direct-injection of higher reactivity fuels was used to control combustion phasing and duration. In addition to injection and operating parameters, the study explored the effect of fuel properties by considering both gasoline-diesel dual-fuel operation, ethanol (E85)-diesel dual fuel operation, and a single fuel gasoline-gasoline+DTBP (di-tert butyl peroxide cetane improver). Remarkably, high gross indicated thermal efficiencies were achieved, reaching 59%, 56%, and 57% for E85-diesel, gasoline-diesel, and gasoline-gasoline+DTBP respectively.
X