Criteria

Text:
Display:

Results

Viewing 1 to 30 of 65488
2011-05-17
Journal Article
2011-01-1649
Andrew J. Morello, Jason R. Blough, Jeffrey Naber, Libin Jia
Research into the estimation of diesel engine combustion metrics via non-intrusive means, typically referred to as “remote combustion sensing” has become an increasingly active area of combustion research. Success in accurately estimating combustion metrics with low-cost non-intrusive transducers has been proven and documented by multiple sources on small scale diesel engines (2-4 cylinders, maximum outputs of 67 Kw, 210 N-m). This paper investigates the application of remote combustion sensing technology to a larger displacement inline 6-cylinder diesel with substantially higher power output (280 kW, 1645 N-m) than previously explored. An in-depth frequency analysis has been performed with the goal of optimizing the estimated combustion signature which has been computed based upon the direct relationship between the combustion event measured via a pressure transducer, and block vibration measured via accelerometers.
2011-05-17
Technical Paper
2011-01-1647
Kristopher Lynch, John Maxon
Gulfstream Aerospace Corporation (GAC) owns and operates an Acoustic Test Facility (ATF) in Savannah, GA. The ATF consists of a Reverberation Chamber, Hemi-Anechoic Chamber, and a Control Room. Types of testing conducted in the ATF include Transmission Loss, Sound Power, and Vibration testing. In addition to accommodating typical types of acoustic testing, the ATF has some unique capabilities. The ATF can be used to conduct testing at cold temperatures representative of up to 45,000 ft flight altitude, while simultaneously taking Transmission Loss measurements of the chilled test sample. Additionally, the ATF has the capability of conducting Transmission Loss testing of a full mockup of the aircraft sidewall, including a section of fuselage, all the thermal/acoustic materials up to and including the interior decorative panel. A sound source capable of very high amplitudes at high frequencies is required to obtain good measurements from testing multiple wall systems such as this.
2011-05-17
Technical Paper
2011-01-1656
Albers Albert, Alexander Schwarz
The NVH (Noise Vibration Harshness) behavior of modern vehicles becomes more and more important - especially in terms of new powertrain concepts, like in hybrid electric or full electric vehicles. There are many tools and methods to develop and optimize the NVH behavior of modern vehicles. At the end of the development process, subjective ratings from road tests are very important. For objective analyses, different approaches based on artificial neural networks exist. One example is the AVL-DRIVE™ system, a driveability analysis and benchmarking system which allows, based on a very small set of sensors, an adequate objective rating of the vehicle's driveability. The system automatically detects driving maneuvers and rates the driveability. This article presents a method which is able not only to rate different maneuvers and the behavior of the vehicle but also to detect phenomena and causes in the domain of NVH.
2011-05-17
Technical Paper
2011-01-1612
Dan Faylor
As North American truck manufactures have entered the global market it has become apparent that there are widely varying drive-by noise regulations required in various areas of the world. This paper will describe differences between various test procedures, track layouts, and required levels. Data will be presented showing vehicle results from various procedures, used to quantify differences in noise levels between a range of procedures. Countries were ranked from least restrictive to most restrictive based on test procedures and legal market requirements.
2011-05-17
Technical Paper
2011-01-1611
Dhanesh Purekar
An existing pass by noise data acquisition system was upgraded to provide the sophisticated data analysis techniques and test site efficiency required to comply with the current and future drive by noise regulations. Use of six sigma tool such as voice of the customer helped in defining the customer requirements which were then translated into the desired engineering characteristics using QFD. Pugh concept matrix narrowed down the best option suitable for the test site modifications taking into account the critical constraints such as test complexity, system cost & transparency to the existing drive by noise setup. Features of the new system include data telemetry, frequency analysis, portability and efficient data management through the use of advanced data acquisition system. Wireless mode of the data transmission helped significantly avoid most of the test site modifications, which in turn helped to reduce the overall system implementation cost.
2011-05-17
Journal Article
2011-01-1614
Thomas C. Austin, Pamela Amette, Christopher F. Real, John F. Lenkeit
In response to a growing need for a practical and technically valid method for measuring exhaust sound pressure levels (SPL) of on-highway motorcycles, the SAE Motorcycle Technical Steering Committee has developed Surface Vehicle Recommended Practice J28251, “Measurement of Exhaust Sound Pressure Levels of Stationary On-Highway Motorcycles,” which includes a new stationary sound test procedure and recommendations for limit values. Key goals of the development process included: minimal equipment requirements, ease of implementation by non-technical personnel, and consistency with the federal EPA requirements; in particular, vehicles compliant with the EPA requirements should not fail when assessed using J2825. Development of the recommended practice involved a comprehensive field study of 25 motorcycles and 76 different exhaust systems, ranging from relatively quiet OEM systems to unbaffled, aftermarket exhaust systems.
2011-05-17
Journal Article
2011-01-1613
Paul R. Donavan
With increasing use of the constant speed pass-by conditions to capture the noise generated by this portion of the vehicle operating cycle, knowledge of the contributing sources of noise was become increasingly important. For frequencies above 400 Hz, the noise is dominated by tire/pavement noise as can be demonstrated by comparing on-board sound intensity (OBSI) measurements to constant speed pass-by noise levels. At lower frequencies, direct on-board measurements become more difficult as the tire/pavement noise source strength decreases with decreasing frequency and microphone induced wind noise increases. To investigate the contribution of sources at these lower frequencies, cruise and coast pass-by measurements were made for a number of different pavement types and two different tire designs at test speeds of 56, 72, and 97 km/h over a frequency range from 50 to 10,000 Hz. OBSI measurements were also conducted for these same conditions.
2011-05-17
Technical Paper
2011-01-1608
Todd Freeman, Gabriella Cerrato
Design parameters for automotive components can be highly affected by the requirements imposed for vehicle pass-by compliance. The key systems affecting pass-by performance generally include the engine, tires, intake system, and exhaust system. The development of these systems is often reliant on the availability of prototype hardware for physical testing on a pass-by course, which can lead to long and potentially costly development cycles. These development cycles can benefit significantly from the ability to utilize analytical data to guide development of component-level design parameters related to pass-by noise. To achieve this goal, test and analysis methods were developed to estimate the vehicle-level pass-by performance from component level data, both from physical and/or analytical sources. The result allows for the estimation of the overall vehicle-level pass-by noise along with the contributions to the total and dominant frequency content from each of the key noise sources.
2011-05-17
Technical Paper
2011-01-1610
Jacobus Huijssen, Raphael Hallez, Bert Pluymers, Stijn Donders, Wim Desmet
Prediction of the drive-by noise level in the early design stage of an automotive vehicle is feasible if the source signatures and source-receiver transfer functions may be determined from simulations based on the available CAD/CAE models. This paper reports on the performance of a drive-by noise synthesis procedure in which the transfer functions are numerically evaluated by employing the Fast Multipole Boundary Element Method (FMBEM). The proposed synthesis procedure first computes the steady-state receiver contributions of the sources as appearing from a number of vehicle positions along the drive path. In a second step, these contributions are then combined into a single transient signal from a moving vehicle for each source-receiver pair by means of a travel time correction.
2011-05-17
Technical Paper
2011-01-1609
Karl Janssens, Pieter Aarnoutse, Peter Gajdatsy, Laurent Britte, Filip Deblauwe, Herman Van der Auweraer
This paper presents a new time-domain source contribution analysis method for in-room pass-by noise. The core of the method is a frequency-domain ASQ model (Airborne Source Quantification) representing each noise generating component (engine, exhaust, left and right tyres, etc.) by a number of acoustic sources. The ASQ model requires the measurement of local FRF's and acoustic noise transfer functions to identify the operational loads from nearby pressure indicator responses and propagate the loads to the various target microphones on the sides of the vehicle. Once a good ASQ model is obtained, FIR filters are constructed, allowing a time-domain synthesis of the various source contributions to each target microphone. The synthesized target response signals are finally recombined into a pass-by sound by taking into account the speed profile of the vehicle.
2011-05-17
Technical Paper
2011-01-1621
Frank Friedrich
While the microcellular urethane is widely known in the automotive industry for its use in jounce bumpers, its use in Noise Vibration Harshness (NVH) applications is often not as well recognized. Even though there are some NVH parts in the market, rubber still dominates it. The objective of this paper is to demonstrate the material properties of MCU and their relevance for NVH applications in chassis and suspension components. It will also demonstrate the importance of package design to suit the use of the MCU material. This is especially important to not only achieve the best performance but also keep overall cost and weight under control. Several application types will be introduced with general design suggestions. A detailed design guideline for these applications is not part of this paper. Each application has a large variety of parameters to be considered in the design. They need to be selectively applied based on customer performance targets.
2011-05-17
Technical Paper
2011-01-1623
Alan V. Parrett, Chong Wang, Xiandi Zeng, David Nielubowicz, Mark Snowden, Jonathon H. Alexander, Ronald Gerdes, Bill Leeder, Charles Zupan
In recent years several variants of lightweight multi-layered acoustic treatments have been used successfully in vehicles to replace conventional barrier-decoupler interior dash mats. The principle involved is to utilize increased acoustic absorption to offset the decrease in insertion loss from the reduced mass such that equivalent vehicle level performance can be achieved. Typical dual density fibrous constructions consist of a relatively dense cap layer on top of a lofted layer. The density and flow resistivity of these layers are tuned to optimize a balance of insertion loss and absorption performance. Generally these have been found to be very effective with the exception of dash mats with very high insertion loss requirements. This paper describes an alternative treatment which consists of a micro-perforated film top layer and fibrous decoupler layer.
2011-05-17
Technical Paper
2011-01-1622
Ray Helferty, Walid Omar, Philip Weber
Expandable cavity sealers have become a critical component of the overall acoustic package that contributes to the documented noise reduction in passenger car applications over the course of the last twenty years. They encompass a variety of technologies, some of which are delivered into the supply chain as bulk materials and others which are highly engineered parts and assemblies. As the market for smaller and more fuel efficient vehicles continues to expand, design architectures of the base vehicle platforms are evolving to include body designs with smaller spaces between adjacent layers of sheet metal. As this space, or cavity, between the adjacent layers of sheet metal is shrinking, the complexity of components that must be integrated into the space between these layers of steel is increasing. Complex arrays of airbags, corresponding wire harnesses, and water management tools are now standard requirements in the design process.
2011-05-17
Technical Paper
2011-01-1617
T.S. Miller, S.W. Lee, G. Holup, J.M. Gallman, M.J. Moeller
The turbulent boundary layer (TBL) that forms on the outer skin of the aircraft in flight is a significant source of interior noise. However, the existing quiet test facilities capable of measuring the TBL wall pressure fluctuations tend to be at low Mach numbers. The objective of this study was to develop a new inlet for an existing six inch square (or 6×6) flow duct that would be adequately free from facility noise to study the TBL wall pressure fluctuations at higher, subsonic Mach numbers. First, the existing flow duct setup was used to measure the TBL wall pressure fluctuations. Then the modified inlet was successfully used to make similar measurements up to Mach number of 0.6. These measurements will be used in the future to validate wall pressure spectrum models for interior noise analysis programs such as statistical energy analysis (SEA) and dynamic energy analysis (DEA).
2011-05-17
Technical Paper
2011-01-1618
George Chaoying Peng
Automotive manufactures demand early assessment of vehicle form design against wind noise attribute to eliminate any engineering waste induced by late design changes. To achieve such an assessment, it is necessary to determine a measurable quantity which is able to represent vehicle form changes, and to understand the relationship between the quantity and vehicle interior cabin noise. This paper reports experimental measurements of vehicle exterior surface pressure and the interior cabin noise level in response to the change of exterior rear view mirror shape. Measurements show that exterior surface pressure on vehicle greenhouse panel is a primary factor of wind noise load to the interior cabin noise; they can be used in preliminary wind noise ranking. Care should be taken when using them in ranking vehicle form wind noise performance. It has been observed that a change in surface pressure on the front side window does not necessarily lead to a change in the interior cabin noise.
2011-05-17
Technical Paper
2011-01-1628
Hejie Lin, Turgay Bengisu, Zissimos Mourelatos
Styrene-Butadiene Rubber (SBR), a copolymer of butadiene and styrene, is widely used in the automotive industry due to its high durability and resistance to abrasion, oils and oxidation. Some of the common applications include tires, vibration isolators, and gaskets, among others. This paper characterizes the dynamic behavior of SBR and discusses the suitability of a visco-elastic model of elastomers, known as the Kelvin model, from a mathematical and physical point of view. An optimization algorithm is used to estimate the parameters of the Kelvin model. The resulting model was shown to produce reasonable approximations of measured dynamic stiffness. The model was also used to calculate the self heating of the elastomer due to energy dissipation by the viscous damping components in the model. Developing such a predictive capability is essential in understanding the dynamic behavior of elastomers considering that their dynamic stiffness can in general depend on temperature.
2011-05-17
Technical Paper
2011-01-1629
Saurabh Suresh, Jeff Kastner, Teik Lim
Reduction of noise transmitted through laminated glass with interlayer is of interest to vehicle applications. Altering the structure of the interlayer can impact sound transmission loss particularly at the coincidence frequency. This study investigates the feasibility of including a porous layer within the laminated glass to act as an acoustic damper. To understand the underlying physics controlling transmission loss in laminated glass design, an approach utilizing transfer matrices is used for modeling each layer in the laminated glass. These transfer matrices are used to relate the acoustic characteristics of two points within a layer. For any two layers in contact, an interface matrix is defined that relates the acoustic fields of the layers depending on their individual characteristics. The solid layer is modeled as an elastic element and the sound propagation through the porous materials is described using the Biot theory.
2011-05-17
Technical Paper
2011-01-1632
Ion Pelinescu, Andrew Christie
One of the most effective NVH solutions used in the automotive industry to reduce structure-borne noise is to apply vibration damping treatments to the vehicle structure. These damping treatments need to meet increasing weight reduction targets, while offering the same or better damping properties. While Liquid Applied Structural Dampers (LASD) are now delivering high damping performance at lower densities, traditional damping measuring techniques are falling short in describing the performance of these extensional layers when applied onto more realistic test samples or real structures. This paper discusses the damping performance of LASD technology, in particular the newer generations of acrylic-based waterborne LASD materials, which through improvements in polymer architecture are achieving increased damping efficiencies together with reduced density.
2011-05-17
Technical Paper
2011-01-1624
Prasanth B, Sachin Wagh, David Hudson
Baffle plates with heat reactive expandable foam sealants have increasingly found their applications in automotives. They are used to separate body cavities and to impede noise, water and dust propagation inside of body cavities, thus control noise intrusion into the passenger compartment. Use of these sealant materials has grown significantly as the demands to improve vehicle acoustic performance has increased. Traditionally quantification of the acoustic performance of expandable baffle samples involved making separate vehicles with and without expandable baffles and measure the incab noise to know the effect. The absolute acoustic evaluation of the baffles is very difficult as number of other vehicle parameters is also responsible for vehicle incab noise. Also, it is a time consuming and a costly method to evaluate.
2011-05-17
Technical Paper
2011-01-1625
John G. Cherng, Qian Xi, Pravansu Mohanty, Gordon Ebbitt
Acoustical materials are widely used in automotive vehicles and other industrial applications. Two important parameters namely Sound Transmission Loss (STL) and absorption coefficient are commonly used to evaluate the acoustical performance of these materials. Other parameters, such as insertion loss, noise reduction, and loss factors are also used to judge their performance depending on the application of these materials. A systematic comparative study of STL and absorption coefficient was conducted on various porous acoustical materials. Several dozen materials including needled cotton fiber (shoddy) and foam materials with or without barrier/scrim were investigated. The results of STL and absorption coefficient are presented and compared. As expected, it was found that most of materials are either good in STL or good in absorption. However, some combinations can achieve a balance of performance in both categories.
2011-05-17
Technical Paper
2011-01-1626
Jonathan Alexander, David Reed, Ronald Gerdes
Flat, constant thickness composites that consisted of a microperforated top layer plus a fibrous decoupler layer were tested for random absorption and transmission loss (TL) performance. The top, microperforated layer consisted of a relatively thick film that contained small, precise micro-perforations. For reference, top layers that consisted of a resistive scrim and an impervious film were also included in this study. Two fibrous materials of constant thickness were used for the decoupler layer between a steel panel and the top microperforated film. The composites' absorption and TL performance were also modeled using the well-known transfer matrix method. This method has been implemented in a commercially available statistical energy analysis (SEA) software package. A comparison of testing and modeling results showed reasonable agreement for absorption results and even better agreement for transmission loss and insertion loss results.
2011-05-17
Journal Article
2011-01-1627
J. Liu, D. W. Herrin
Microperforated panel (MPP) absorbers are rugged, non-combustible, and do not deteriorate over time. That being the case, they are especially suitable for long term use in harsh environments. However, the acoustic performance is modified when contaminated by dust, dirt, or fluids (i.e. oil, water). This paper examines that effect experimentally and correlates the absorption performance with Maa's theory for micro-perforated panels. Transfer impedance and absorption coefficient are measured for different levels of aluminum oxide and carbon dust accumulation. The amount of dust contamination is quantified by measuring the luminance difference between clean and dirty panels with a light meter. The porosity and hole diameter in Maa's equation are modified to account for dust obstruction. The effect of coating the MPP with oil, water, and other appropriate viscous fluids was also measured. This effect was simulated by modifying the viscous factor in Maa's equation.
2011-05-17
Technical Paper
2011-01-1640
Daniel J. Maguire PhD, Kathleen Reilly, Christian Carme PhD
Active noise control (ANC) has been established as an effective way of addressing low frequency tonal noise in a weight-effective manner. The noise signature of a diesel locomotive cabin suggests that it is a good candidate for ANC. While often true, the production integration of ANC in a working locomotive has challenges extending well beyond laboratory demonstrations. This paper describes an ANC product developed as an aftermarket treatment for a particular model of fleet locomotive including locomotive passive treatment needs, control methods motivated by cabin acoustics, space and safety requirements, as well as logistical demands for testing and deployment.
2011-05-17
Technical Paper
2011-01-1634
Michael Dinsmore, Richard Bliton, Scott Perz
Using advanced, multi-layer poro-elastic acoustical material modeling technologies, an example of acoustical performance optimization of an underhood sound absorber application is presented. In this case, a porous facing in combination with a fibrous sound absorber pad is optimized for maximum efficiency, which allows for dramatic reduction in pad density and weight. Overall sound absorption performance is shown to be equal or improved versus frequency relative to the incumbent design.
2011-05-17
Technical Paper
2011-01-1637
Ahad Khezerloo, Amin owhadi Esfahani PhD, Sina Jalily lng
One of important problems in railway transportation systems is control of noise and vibration. Metal foams are very good medias for absorbing noise. So in this paper, noise of motion of a train is simulated by MATLAB software and the reduction of noise level in a compartment of passenger car that is equipped by metal foam sheets is considered. Commonly, the sound absorption coefficients are obtained experimentally and they are available in datasheets and references. The different parameters that influence on the capability of this equipment were considered. For example the microstructure, thickness, magnitude of compaction, relative density and etc of metal foam is effective parameters. High porosity has good effect on the performance of absorber sheet. By increasing of compaction ratio, in frequency domain we will have enhancing of absorption of the noise. Compaction process is done by two different ways: one is direct and else is progressively.
2011-05-17
Technical Paper
2011-01-1566
Thomas Reinhart, Mitchel Smolik
Several new or significantly upgraded heavy duty truck engines are being introduced in the North American market. One important aspect of these new or revised engines is their noise characteristics. This paper describes the noise related characteristics of the new DD15 engine, and compares them to other competitive heavy truck engines. DD15 engine features relevant to noise include a rear gear train, isolated oil pan and valve cover, and an amplified high pressure common rail fuel system. The transition between non-amplified and amplified common rail operation is shown to have a significant noise impact, not unlike the transition between pilot injection and single shot injection in some other engines.
2011-05-17
Journal Article
2011-01-1575
John David Fieldhouse, David Bryant, Chris John Talbot
Thermo-elastic and thermo-plastic behaviour takes place with a disc brake during heavy braking and it is this aspect of braking that this paper considers. The work is concerned with working towards developing design advice that provides uniform heating of the disc, and equally important, even dissipation of heat from the disc blade. The material presented emanates from a combination of modeling, on-vehicle testing but mainly laboratory observations and subsequent investigations. The experimental work makes use of a purpose built high speed brake dynamometer which incorporates the full vehicle suspension for controlled simulation of the brake and vehicle operating conditions. Advanced instrumentation allows dynamic measurement of brake pressure fluctuations, disc surface temperature and discrete vibration measurements.
2011-05-17
Technical Paper
2011-01-1604
Zhi-yong Chen, Guang-ming Wu, Wen-ku Shi, Qing-guo Wang, Teng Teng
Hyperelastic model constants of rubber material are predicted based on test date. The fluid-structure interaction model of light vehicle cab's hydraulic mount is established. Static characteristics of the hydraulic mount are analyzed by quasi-static method. In dynamic characteristics analysis, the flow model of fluid is set to turbulent K-Epsilon RNG. The dynamic stiffness and loss angle of the hydraulic mount are presented via the finite element model. The simulations of static and dynamic characteristics agree well with corresponding test results. The effects of main structure parameters to the dynamic characteristics of the hydraulic mount are analyzed based on the finite element model.
2011-05-17
Technical Paper
2011-01-1605
YongHwa Heo, Kwang-joon Kim, Shi-hwan Oh, Dae-kwan Kim, Ki-lyuk Yong, YoungMin Park
Reaction wheels are used to control the attitude of a satellite in space in an almost static manner. Excitation forces at high frequencies as well, however, due to unbalance or bearing faults, can be transmitted to the satellite structure and work badly against missions of the satellite. Hence, counteractions such as vibration isolators are often employed in practice. In this paper, procedures are presented to design and test rubber vibration isolators based on characteristics of the transmission forces without isolators obtained from a previous study. First, a system consisting of reaction wheel, bearing, rigid cover and isolators was modeled with 11 degrees of freedom. Second, stiffness and damping of the isolators were designed such that the forces transmitted onto the satellite structure might satisfy given criteria. Finally, an actual isolation system fabricated using a rubber was tested to check the transmission forces.
2011-05-17
Technical Paper
2011-01-1531
Michael Thivant, pascal BOUVET PhD, Alexandre Carbonelli
Due to the increasing focus on noise and vibration for future vehicles, there is a need for a clear definition of the requirements between vehicle manufacturers and auxiliary suppliers. Auxiliary characterisations are also needed as input for structure-borne numerical prediction models. Strongly coupled systems are amongst the most difficult structure-borne noise issues, as the transmitted forces and powers are strongly dependent upon the mobilities of both the vibration source and receiver. The so-called “blocked forces” can be used as intrinsic source descriptions. The challenge is then to design auxiliary test benches perfectly rigid in the frequency range of interest. The current paper is based on the French research program MACOVAM dedicated to the vibro-acoustic characterisation of oil pumps for truck engines. An original test bench was designed to measure quasi-blocked forces over the [150 Hz-2800 Hz] frequency range.
Viewing 1 to 30 of 65488

Filter

  • Range:
    to:
  • Year: